214
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Bioinformatics Study of Flavonoids From Genus Erythrina As Ace2 inhibitor Candidates For Covid-19 Treatment

, , , ORCID Icon &
Pages 61-70 | Received 22 Jan 2024, Accepted 03 May 2024, Published online: 13 May 2024

References

  • World Health Organization. COVID-19 epidemiological update – 19 January 2024. Available from: https://www.who.int/publications/m/item/covid-19-epidemiological-update---19-january-2024. Accessed May 10, 2024.
  • Rabie AM. Potent Inhibitory Activities of the Adenosine Analogue Cordycepin on SARS-CoV-2 Replication. ACS Omega. 2022;7(3):2960–2969. doi:10.1021/acsomega.1c05998
  • Li Q, Lai L. Prediction of potential drug targets based on simple sequence properties. BMC Bioinf. 2007;8(1). doi:10.1186/1471-2105-8-353
  • Rabie AM. Future of the current anticoronaviral agents: a viewpoint on the validation for the next COVIDs and pandemics. Biocell. 2023;47(10):2133–2139. doi:10.32604/biocell.2023.030057
  • Rabie AM, Abdalla M. Forodesine and Riboprine Exhibit Strong Anti-SARS-CoV-2 Repurposing Potential: in Silico and In Vitro Studies. ACS Bio and Med Chem Au. 2022;2(6):565–585. doi:10.1021/acsbiomedchemau.2c00039
  • Jia H, Neptune E, Cui H. Targeting ACE2 for COVID-19 Therapy: opportunities and challenges. Am J Respir Cell Mol Biol. 2021;64(4):416–425. doi:10.1165/rcmb.2020-0322PS
  • Hochuli JE, Jain S, Melo-Filho C, et al. Allosteric Binders of ACE2 Are Promising Anti-SARS-CoV-2 Agents. ACS Pharmacol Transl Sci. 2022;5(7):468–478. doi:10.1021/acsptsci.2c00049
  • Goulding LV, Yang J, Jiang Z, et al. Thapsigargin at non-cytotoxic levels induces a potent host antiviral response that blocks influenza a virus replication. Viruses. 2020;12(10):1093. doi:10.3390/v12101093
  • Tutunchi H, Naeini F, Ostadrahimi A, Hosseinzadeh-Attar MJ. Naringenin, a flavanone with antiviral and anti-inflammatory effects: a promising treatment strategy against COVID −19. Phytother Res. 2020;34(12):3137–3147. doi:10.1002/ptr.6781
  • Loizzo MR, Said A, Tundis R, et al. Inhibition of angiotensin converting enzyme (ACE) by flavonoids isolated from Ailanthus excelsa (Roxb) (Simaroubaceae). Phytother Res. 2007;21(1):32–36. doi:10.1002/ptr.2008
  • Fahmy NM, Al-Sayed E, El-Shazly M, Singab AN. Comprehensive review on flavonoids biological activities of Erythrina plant species. Ind Crops Prod. 2018;123:500–538. doi:10.1016/j.indcrop.2018.06.028
  • Son NT, Elshamy AI. Flavonoids and other Non-alkaloidal Constituents of Genus Erythrina: phytochemical Review. Comb Chem High Throughput Screen. 2021;24(1):20–58. doi:10.2174/1386207323666200609141517
  • Kone WM, Solange KNE, Dosso M. Assessing sub-saharian Erythrina for efficacy: traditional uses, biological activities and phytochemistry. Pak J Biological Sci. 2011;14(10):560–571. doi:10.3923/pjbs.2011.560.571
  • Shen C, Ding J, Wang Z, Cao D, Ding X, Hou T. From machine learning to deep learning: advances in scoring functions for protein–ligand docking. Wiley Interdiscip Rev Comput Mol Sci. 2020;10(1). doi:10.1002/wcms.1429
  • Miles JA, Ross BP. Recent Advances in Virtual Screening for Cholinesterase Inhibitors. ACS Chem Neurosci. 2021;12(1):30–41. doi:10.1021/acschemneuro.0c00627
  • Rajendran M, Roy S, Ravichandran K, et al. In silico screening and molecular dynamics of phytochemicals from Indian cuisine against SARS-CoV-2 M Pro. J Biomol Struct Dyn. 2022;40(7):3155–3169. doi:10.1080/07391102.2020.1845980
  • Gimeno A, Ojeda-Montes MJ, Tomás-Hernández S, et al. The light and dark sides of virtual screening: what is there to know? Int J Mol Sci. 2019;20(6):1375. doi:10.3390/ijms20061375
  • Nishinarizki V, Hardianto A, Gaffar S, Muchtaridi M, Herlina T. Virtual screening campaigns and ADMET evaluation to unlock the potency of flavonoids from Erythrina as 3CLpro SARS-COV-2 inhibitors. J Appl Pharm Sci. 2023;13(2). doi:10.7324/JAPS.2023.130209
  • Pires DEV, Blundell TL, Ascher DB. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 2015;58(9):4066–4072. doi:10.1021/acs.jmedchem.5b00104
  • Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215–220. doi:10.1038/s41586-020-2180-5
  • Goodsell DS, Sanner MF, Olson AJ, Forli S. The AutoDock suite at 30. Protein Sci. 2021;30(1):31–43. doi:10.1002/pro.3934
  • Hardianto A, Yusuf M, Hidayat IW, Ishmayana S, Soedjanaatmadja UMS. Exploring the Potency of Nigella sativa Seed in Inhibiting SARS-CoV-2 Main Protease Using Molecular Docking and Molecular Dynamics Simulations. Indonesian J Chem. 2021;21(5):1252. doi:10.22146/IJC.65951
  • Roe DR, Cheatham TE. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput. 2013;9(7):3084–3095. doi:10.1021/ct400341p
  • Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1). doi:10.1038/srep42717
  • Okocha RC, Olatoye IO, Adedeji OB. Food safety impacts of antimicrobial use and their residues in aquaculture. Public Health Rev. 2018;39(1). doi:10.1186/s40985-018-0099-2
  • Garrido A, Lepailleur A, Mignani SM, Dallemagne P, Rochais C. hERG toxicity assessment: useful guidelines for drug design. Eur J Med Chem. 2020;195. doi:10.1016/j.ejmech.2020.112290
  • Meunier L, Larrey D. Drug-induced liver injury: biomarkers, requirements, candidates, and validation. Front Pharmacol. 2019;10. doi:10.3389/fphar.2019.01482
  • Shultz MD. Two Decades under the Influence of the Rule of Five and the Changing Properties of Approved Oral Drugs. J Med Chem. 2019;62(4):1701–1714. doi:10.1021/acs.jmedchem.8b00686
  • James JP, Ail PD, Crasta L, Kamath RS, Shura MH, S TJ. In Silico ADMET and Molecular Interaction Profiles of Phytochemicals from Medicinal Plants in Dakshina Kannada. J Health Allied Sci NU. 2023. doi:10.1055/s-0043-1770057
  • Matondo A, Dendera W, Isamura BK, et al. In silico Drug Repurposing of Anticancer Drug 5-FU and Analogues Against SARS-CoV-2 Main Protease: molecular Docking, Molecular Dynamics Simulation, Pharmacokinetics and Chemical Reactivity Studies. <![CDATA[Advances and Applications in Bioinformatics and Chemistry]]>. 2022;15:59–77. doi:10.2147/AABC.S366111
  • Rabie AM, Eltayb WA. Potent Dual Polymerase/Exonuclease Inhibitory Activities of Antioxidant Aminothiadiazoles Against the COVID-19 Omicron Virus: a Promising In Silico/In Vitro Repositioning Research Study. Mol Biotechnol. 2023;66(4):592–611. doi:10.1007/s12033-022-00551-8
  • Chamata Y, Jackson KG, Watson KA, Jauregi P. Whey-derived peptides at the heart of the covid-19 pandemic. Int J Mol Sci. 2021;22(21):11662. doi:10.3390/ijms222111662
  • Sui H, Yu Q, Zhi Y, Geng G, Liu H, Xu H. Effects of apigenin on the expression of angiotensin-converting enzyme 2 in kidney in spontaneously hypertensive rats. Wei Sheng Yan Jiu. 2010;39(6):693–6, 700.
  • Hettihewa SK, Hemar Y, Vasantha Rupasinghe HP. Flavonoid-rich extract of Actinidia macrosperma (a wild kiwifruit) inhibits angiotensin-converting enzyme in vitro. Foods. 2018;7(9):146. doi:10.3390/foods7090146
  • Guerrero L, Castillo J, Quiñones M, et al. Inhibition of Angiotensin-Converting Enzyme Activity by Flavonoids: structure-Activity Relationship Studies. PLoS One. 2012;7(11):e49493. doi:10.1371/journal.pone.0049493
  • Son NT, Elshamy AI. Flavonoids and other Non-alkaloidal Constituents of Genus Erythrina: phytochemical Review. Comb Chem High Throughput Screen. 2020;24(1):20–58. doi:10.2174/1386207323666200609141517
  • Han DP, Penn-Nicholson A, Cho MW. Identification of critical determinants on ACE2 for SARS-CoV entry and development of a potent entry inhibitor. Virology. 2006;350(1):15–25. doi:10.1016/j.virol.2006.01.029
  • Kashyap P, Thakur M, Singh N, et al. In Silico Evaluation of Natural Flavonoids as a Potential Inhibitor of Coronavirus Disease. Molecules. 2022;27(19):6374. doi:10.3390/molecules27196374
  • Lee MY, Kumar RA, Sukumaran SM, Hogg MG, Clark DS, Dordick JS. Three-dimensional cellular microarray for high-throughput toxicology assays. Proc Natl Acad Sci U S A. 2008;105(1):59–63. doi:10.1073/pnas.0708756105
  • Mansoor A, Mahabadi N. Volume of Distribution. StatPearls Publishing; 2022.
  • Heo JK, Kim HJ, Lee GH, et al. Simultaneous determination of five cytochrome P450 probe substrates and their metabolites and organic anion transporting polypeptide probe substrate in human plasma using liquid chromatography-tandem mass spectrometry. Pharmaceutics. 2018;10(3):79. doi:10.3390/pharmaceutics10030079
  • Tapaninen T, Olkkola AM, Tornio A, et al. Itraconazole Increases Ibrutinib Exposure 10-Fold and Reduces Interindividual Variation—A Potentially Beneficial Drug-Drug Interaction. Clin Transl Sci. 2020;13(2):345–351. doi:10.1111/cts.12716