149
Views
0
CrossRef citations to date
0
Altmetric
Review

Antibody–drug conjugates: targeted weapons against cancer

, &
Pages 1-13 | Published online: 09 Jan 2015

References

  • Chabner BA, Roberts TG Jr. Timeline: chemotherapy and the war on cancer. Nat Rev Cancer. 2005;5(1):65–72.
  • Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7.
  • Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12(4):278–287.
  • Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol. 2005;23(9):1137–1146.
  • Nelson AL, Dhimolea E, Reichert JM. Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov. 2010;9(10):767–774.
  • Kreitman RJ. Toxin-labeled monoclonal antibodies. Curr Pharm Biotechnol. 2001;2(4):313–325.
  • Sharkey RM, Goldenberg DM. Perspectives on cancer therapy with radiolabeled monoclonal antibodies. J Nucl Med. 2005;46(Suppl 1):115S–127S.
  • Payne G. Progress in immunoconjugate cancer therapeutics. Cancer Cell. 2003;3(3):207–212.
  • Evans JB, Syed BA. From the analyst’s couch: next-generation antibodies. Nat Rev Drug Discov. 2014;13(6):413–414.
  • Bross PF, Beitz J, Chen G, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7(6):1490–1496.
  • Beck A, Haeuw JF, Wurch T, Goetsch L, Bailly C, Corvaïa N. The next generation of antibody-drug conjugates comes of age. Discov Med. 2010;10(53):329–339.
  • Beck A, Reichert JM. Antibody-drug conjugates: present and future. MAbs. 2014;6(1):15–17.
  • Carter PJ, Senter PD. Antibody-drug conjugates for cancer therapy. Cancer J. 2008;14(3):154–169.
  • Teicher BA. Antibody-drug conjugate targets. Curr Cancer Drug Targets. 2009;9(8):982–1004.
  • Dijoseph JF, Dougher MM, Armellino DC, et al. CD20-specific antibody-targeted chemotherapy of non-Hodgkin’s B-cell lymphoma using calicheamicin-conjugated rituximab. Cancer Immunol Immunother. 2007;56(7):1107–1117.
  • Lewis Phillips GD, Li G, Dugger DL, et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 2008;68(22):9280–9290.
  • Sutherland MS, Sanderson RJ, Gordon KA, et al. Lysosomal trafficking and cysteine protease metabolism confer target-specific cytotoxicity by peptide-linked anti-CD30-auristatin conjugates. J Biol Chem. 2006;281(15):10540–10547.
  • Weisz OA. Acidification and protein traffic. Int Rev Cytol. 2003;226: 259–319.
  • Kovtun YV, Goldmacher VS. Cell killing by antibody-drug conjugates. Cancer Lett. 2007;255(2):232–240.
  • Lambert JM. Drug-conjugated monoclonal antibodies for the treatment of cancer. Curr Opin Pharmacol. 2005;5(5):543–549.
  • Ducry L, Stump B. Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug Chem. 2010;21(1):5–13.
  • Polson AG, Calemine-Fenaux J, Chan P, et al. Antibody-drug conjugates for the treatment of non-Hodgkin’s lymphoma: target and linker-drug selection. Cancer Res. 2009;69(6):2358–2364.
  • Erickson HK, Park PU, Widdison WC, et al. Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res. 2006;66(8):4426–4433.
  • Chari RV. Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res. 2008;41(1):98–107.
  • Koblinski JE, Ahram M, Sloane BF. Unraveling the role of proteases in cancer. Clin Chim Acta. 2000;291(2):113–135.
  • Flygare JA, Pillow TH, Aristoff P. Antibody-drug conjugates for the treatment of cancer. Chem Biol Drug Des. 2013;81(1):113–121.
  • Thayer Ann M. Site specific: developers aim to create well-defined drug conjugates. Chem Engineer News. 2014;92(3):13–21.
  • Django S, Lindsay T, Lori W, et al. Abstract 4634: Engineered cysteine drug conjugates show potency and improved safety. Cancer Res. 2012; 72(8 Suppl 1).
  • Junutula JR, Raab H, Clark S, et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol. 2008;26(8):925–932.
  • Patterson JT, Asano S, Li X, Rader C, Barbas CF, 3rd. Improving the serum stability of site-specific antibody conjugates with sulfone linkers. Bioconjug Chem. Epub August 6, 2014.
  • Feng Y, Zhu Z, Chen W, Prabakaran P, Lin K, Dimitrov DS. Conjugates of small molecule drugs with antibodies and other proteins. Biomedicines. 2014;2:1–13.
  • Photobiotics [homepage on the Internet]. Innovative targeted therapeutics from photobiotics. Available from: http://www.photobiotics.com/technology/targeting-platform-optilink.shtml. Accessed October 28, 2014.
  • Kellogg BA, Garrett L, Kovtun Y, et al. Disulfide-linked antibody-maytansinoid conjugates: optimization of in vivo activity by varying the steric hindrance at carbon atoms adjacent to the disulfide linkage. Bioconjug Chem. 2011;22(4):717–727.
  • Wilbur DS, Chyan MK, Nakamae H, et al. Reagents for astatination of biomolecules. 6. An intact antibody conjugated with a maleimido-closo-decaborate(2–) reagent via sulfhydryl groups had considerably higher kidney concentrations than the same antibody conjugated with an isothiocyanato-closo-decaborate(2–) reagent via lysine amines. Bioconjug Chem. 2012;23(3):409–420.
  • Panowksi S, Bhakta S, Raab H, Polakis P, Junutula JR. Site-specific antibody drug conjugates for cancer therapy. MAbs. 2014;6(1):34–45.
  • Hallam TJ, Smider VV. Unnatural amino acids in novel antibody conjugates. Future Med Chem. 2014;6(11):1309–1324.
  • Strop P, Liu SH, Dorywalska M, et al. Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem Biol. 2013;20(2):161–167.
  • Okeley NM, Toki BE, Zhang X, et al. Metabolic engineering of monoclonal antibody carbohydrates for antibody-drug conjugation. Bioconjug Chem. 2013;24(10):1650–1655.
  • Schellenberger V, Wang CW, Geething NC, et al. A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner. Nat Biotechnol. 2009;27(12):1186–1190.
  • Hang HC, Yu C, Kato DL, Bertozzi CR. A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation. Proc Natl Acad Sci U S A. 2003;100(25):14846–14851.
  • Doronina SO, Toki BE, Torgov MY, et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol. 2003;21(7):778–784.
  • Immunomedics [homepage on the Internet]. ADC linker. Available from: http://www.immunomedics.com/linker-demo.shtml. Accessed October 28, 2014.
  • Möhlmann S, Bringmann P, Greven S, Harrenga A. Site-specific modification of ED-B-targeting antibody using intein-fusion technology. BMC Biotechnol. 2011;11:76.
  • Chang CH., Rossi EA, Goldenberg DM. The dock and lock method: a novel platform technology for building multivalent, multifunctional structures of defined composition with retained bioactivity. Clin Cancer Res. 2007;13(18 Pt 2):5586s–5591s.
  • Liu S. Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides. Adv Drug Deliv Rev. 2008;60(12):1347–1370.
  • LoRusso PM, Weiss D, Guardino E, Girish S, Sliwkowski MX. Trastuzumab emtansine: a unique antibody-drug conjugate in development for human epidermal growth factor receptor 2-positive cancer. Clin Cancer Res. 2011;17(20):6437–6447.
  • Albers AE, Garofalo AW, Drake PM, et al. Exploring the effects of linker composition on site-specifically modified antibody-drug conjugates. Eur J Med Chem. Epub August 23, 2014.
  • Pan LY, Salas-Solano O, Valliere-Douglass JF. Conformation and dynamics of interchain cysteine-linked antibody-drug conjugates as revealed by hydrogen/deuterium exchange mass spectrometry. Anal Chem. 2014;86(5):2657–2664.
  • Cumnock K, Tully T, Cornell C, et al. Trisulfide modification impacts the reduction step in antibody-drug conjugation process. Bioconjug Chem. 2013;24(7):1154–1160.
  • Dang NH, Ogura M, Castaigne S, et al. Randomized, phase 3 trial of inotuzumab ozogamicin plus rituximab (R-InO) versus chemotherapy for relapsed/refractory aggressive B-cell non-Hodgkin lymphoma (B-NHL). Paper presented at: 2014 Annual Meeting of the American Society of Clinical Oncology; Chicago, IL.
  • Morschhauser F, Flinn I, Advani RH, et al. Preliminary results of a phase II randomized study (ROMULUS) of polatuzumab vedotin (PoV) or pinatuzumab vedotin (PiV) plus rituximab (RTX) in patients (Pts) with relapsed/refractory (R/R) non-Hodgkin lymphoma (NHL). Paper presented at: 2014 Annual Meeting of the American Society of Clinical Oncology; Chicago, IL.
  • Wildiers H, Kim SB, Gonzalez-Martin A, et al. T-DM1 for HER2-positive metastatic breast cancer (MBC):primary results from TH3RESA, a phase 3 study of T-DM1 vs treatment of physician’s choice. Paper presented at: European Cancer Congress 2013; Amsterdam, the Netherlands.
  • Hurvitz SA, Dirix L, Kocsis J, et al. Phase II randomized study of trastuzumab emtansine versus trastuzumab plus docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol. 2013;31(9):1157–1163.
  • Yardley DA, Melisko ME, Forero A, et al. Abstract OT2-6-16: A pivotal multicenter, randomized, study evaluating the novel antibody-drug conjugate CDX-011 in patients with metastatic, triple-negative, high GPNMB over-expressing breast cancer. Paper presented at: San Antonio Breast Cancer Symposium 2013; San Antonio, TX.
  • Dotan E, Berlin J, Starodub A, et al. Activity of IMMU-130 anti-CEACAM5-SN-38 antibody-drug conjugate (ADC) on metastatic colorectal cancer (mCRC) having relapsed after CPT-11: Phase I study. Paper presented at: 2014 Annual Meeting of the American Society of Clinical Oncology; Chicago, IL.
  • Starodub A, Ocean AJ, Guarino MJ, et al. IMMU-132, an SN-38 antibody-drug conjugate (ADC) targeting Trop-2, as a novel platform for the therapy of diverse metastatic solid cancers: clinical results. Paper presented at: 2014 Annual Meeting of the American Society of Clinical Oncology; Chicago, IL.
  • Kelly KR, Chanan-Khan A, Somlo G, et al. Indatuximab ravtansine (BT062) in combination with lenalidomide and low-dose dexamethasone in patients with relapsed and/or refractory multiple myeloma: clinical activity in len/dex-refractory patients. Paper presented at: 55th American Society of Hematology Annual Meeting 2013; San Francisco, CA.
  • Trneny M, Verhoef G, Dyer MJS, et al. Starlyte phase II study of coltuximab ravtansine (CoR, SAR3419) single agent: Clinical activity and safety in patients (pts) with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL; NCT01472887). Paper presented at: 2014 Annual Meeting of the American Society of Clinical Oncology; Chicago, IL.
  • Gan HK, Fichtel L, Lassman AB, et al. A phase 1 study evaluating ABT-414 in combination with temozolomide (TMZ) for subjects with recurrent or unresectable glioblastoma (GBM). Paper presented at: 2014 Annual Meeting of the American Society of Clinical Oncology; Chicago, IL.
  • Abbvie [homepage on the Internet]. Abbvie receives EMA and FDA orphan drug designation for investigational compound ABT-414 in the treatment of glioblastoma multiforme. Available from: http://abbvie.mediaroom.com/2014-08-04-AbbVie-Receives-EMA-and-FDA-Orphan-Drug-Designation-for-Investigational-Compound-ABT-414-in-the-Treatment-of-Glioblastoma-Multiforme. Accessed October 28, 2014.
  • Pasquetto MV, Vecchia L, Covini D, Digilio R, Scotti C. Targeted drug delivery using immunoconjugates: principles and applications. J Immunother. 2011;34(9):611–628.
  • Newman DJ, Cragg GM. Marine-sourced anti-cancer and cancer pain control agents in clinical and late preclinical development. Mar Drugs. 2014;12(1):255–278.
  • Bouchard H, Viskov C, Garcia-Echeverria C. Antibody-drug conjugates – a new wave of cancer drugs. BMCL Digest. 2014;24(23):5357–5363.
  • Sassoon I, Blanc V. Antibody-drug conjugate (ADC) clinical pipeline: a review. Methods Mol Biol. 2013;1045:1–27.
  • Perez HL, Cardarelli PM, Deshpande S, et al. Antibody-drug conjugates: current status and future directions. Drug Discov Today. 2014;19(7):869–881.
  • Wu X, Liu X, Koul S, Lee CY, Zhang Z, Halmos B. AXL kinase as a novel target for cancer therapy. Oncotarget. 2014;50(20):9546–9563.
  • Genmab [homepage on the Internet]. Seattle Genetics and Genmab enter into new antibody-drug conjugate collaboration. Available from: http://ir.genmab.com/releasedetail.cfm?ReleaseID=870102. Accessed October 28, 2014.
  • Baghdadi M, Jinushi M. The impact of the TIM gene family on tumor immunity and immunosuppression. Cell Mol Immunol. 2014;11(1):41–48.
  • Celldex Therapeutics [homepage on the Internet]. Celldex Therapeutics establishes preclinical proof of concept for new antibody drug conjugate CDX-014. Data presented at the American Association for Cancer Research Conference 2014. Available from: http://ir.celldex.com/releasedetail.cfm?ReleaseID=838642. Accessed October 28, 2014.
  • Bonifacino JS, Traub LM. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem. 2003;72: 395–447.
  • Traub LM, Bonifacino JS. Cargo recognition in clathrin-mediated endocytosis. Cold Spring Harb Perspect Biol. 2013;5(11):a016790.
  • Schweizer A, Kornfeld S, Rohrer J. Cysteine34 of the cytoplasmic tail of the cation-dependent mannose 6-phosphate receptor is reversibly palmitoylated and required for normal trafficking and lysosomal enzyme sorting. J Cell Biol. 1996;132(4):577–584.
  • Tedder TF, Inaoki M, Sato S. The CD19-CD21 complex regulates signal transduction thresholds governing humoral immunity and autoimmunity. Immunity. 1997;6(2):107–118.
  • Ingle GS, Chan P, Elliott JM, et al. High CD21 expression inhibits internalization of anti-CD19 antibodies and cytotoxicity of an anti-CD19-drug conjugate. Br J Haematol. 2008;140(1):46–58.
  • Ackerman ME, Pawlowski D, Wittrup KD. Effect of antigen turnover rate and expression level on antibody penetration into tumor spheroids. Mol Cancer Ther. 2008;7(7):2233–2240.
  • Rubinfeld B, Upadhyay A, Clark SL, et al. Identification and immunotherapeutic targeting of antigens induced by chemotherapy. Nat Biotechnol. 2006;24(2):205–209.
  • Al-Ejeh F, Darby JM, Brown MP. The La autoantigen is a malignancy-associated cell death target that is induced by DNA-damaging drugs. Clin Cancer Res. 2007;13(18 Pt 2):5509s–5518s.
  • Gerber H.P, Senter PD, Grewal IS. Antibody drug-conjugates targeting the tumor vasculature: current and future developments. MAbs. 2009;1(3):247–253.
  • Prokopiou EM, Ryder SA, Walsh JJ. Tumour vasculature targeting agents in hybrid/conjugate drugs. Angiogenesis. 2013;16(3):503–524.
  • Perrino E, Steiner M, Krall N, et al. Curative properties of noninternalizing antibody-drug conjugates based on maytansinoids. Cancer Res. 2014;74(9):2569–2578.
  • Sauter G, Simon R, Hillan K. Tissue microarrays in drug discovery. Nat Rev Drug Discov. 2003;2(12):962–972.
  • Krueger JS, Lange H, Potts S, Young D. Assessing factors predictive of response to ADCs for companion diagnostic strategies. Paper presented at: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics 2013; Boston, MA.
  • Klinguer-Hamour C, Strop P Shah DK, Ducry L, Xu A, Beck A. World Antibody-Drug Conjugate Summit, October 15–16, 2013, San Francisco, CA. MAbs. 2014;6(1):18–29.
  • Shah DK, Haddish-Berhane N, Betts A. Bench to bedside translation of antibody drug conjugates using a multiscale mechanistic PK/PD model: a case study with brentuximab-vedotin. J Pharmacokinet Pharmacodyn. 2012;39(6):643–659.
  • Shah DK, Betts AM. Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Pharmacodyn. 2012;39(1):67–86.
  • Chudasama VL, Schaedeli Stark F, Harrold JM, et al. Semi-mechanistic population pharmacokinetic model of multivalent trastuzumab emtansine in patients with metastatic breast cancer. Clin Pharmacol Ther. 2012;92(4):520–527.
  • Anderl J, Faulstich H, Hechler T, Kulke M. Antibody-drug conjugate payloads. Methods Mol Biol. 2013;1045:51–70.
  • Whiteman K, Audette C, Dandeneau A, et al. Abstract 2644: Antibody-drug conjugates (ADCs) with a novel DNA-alkylating agent, DGN462, are highly potent in vitro and in vivo against human cancer models. Paper presented at: 105th Annual Meeting of the American Association for Cancer Research 2014; San Diego, CA.
  • Immunogen [homepage on the Internet]. ImmunoGen, Inc. announces preclinical findings for IMGN779, a potential treatment for acute myeloid leukemia. Available from: http://investor.immunogen.com/releasedetail.cfm?ReleaseID=854832. Accessed October 28, 2014.
  • Hartley JA. The development of pyrrolobenzodiazepines as antitumour agents. Expert Opin Investig Drugs. 2011;20(6):733–744.
  • Kung Sutherland MS, Walter RB, Jeffrey SC, et al. SGN-CD33A: a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood. 2013;122(8):1455–1463.
  • ADC Therapeutics [homepage on the Internet]. ADC Therapeutics to move antibody drug conjugate ADCT-401 for prostate cancer into human clinical trials with partner MedImmune. Available from: http://www.adctherapeutics.com/news/2014/05/adc-therapeutics-to-move-antibody-drug-conjugate-adct-401-for-prostate-cancer-into-human-clinical-trials-with-partner-medimmune. Accessed October 28, 2014.
  • Anderl J, Müller C, Heckl-Östreicher B, Wehr R. Abstract 3616: Highly potent antibody-amanitin conjugates cause tumor-selective apoptosis. Paper presented at: 102nd Annual Meeting of the American Association for Cancer Research 2011; Orlando, FL.
  • Hechler T, Kulke M, Mueller C, Pahl A, Anderl J. Abstract 664: Amanitin-based antibody-drug conjugates targeting the prostate-specific membrane antigen. Paper presented at: 105th Annual Meeting of the American Association for Cancer Research 2014; San Diego, CA.
  • List T., Casi G., Neri D. A chemically defined trifunctional antibody-cytokine-drug conjugate with potent antitumor activity. Mol Cancer Ther. 2014;13(11):2641–2652.
  • Verheijden G, Beusker P, Ubink R, et al. Toward clinical development of SYD985, a novel HER2-targeting antibody-drug conjugate (ADC). Paper presented at: 2014 ASCO Annual Meeting2014; Chicago, IL.
  • Synthon Biopharmaceuticals [homepage on the Internet]. Synthon’s Anti-HER2 ADC frontrunner SYD985 outperforms only available HER2-targeting ADC. Available from: http://www.synthon.com/Corporate/News/PressReleases/Synthons-Anti-HER2-ADC-Frontrunner-SYD985-Outperforms-Only-Available-HER2-targeting-ADC?sc_lang=en. Accessed October 28, 2014.
  • McDonagh CF, Kim KM, Turcott E, et al. Engineered anti-CD70 antibody-drug conjugate with increased therapeutic index. Mol Cancer Ther. 2008;7(9):2913–2923.
  • Oxford BioTherapeutics [homepage on the Internet]. Oxford BioTherapeutics lead programs. Available from: http://www.oxfordbiotherapeutics.com/wp/wp-content/uploads/2014/11/OBT_Menarini_357_PhI_Enrollment-20141125.pdf. Accessed December 15, 2014.
  • Wurch T, Pierré A. Depil S. Novel protein scaffolds as emerging therapeutic proteins: from discovery to clinical proof-of-concept. Trends Biotechnol. 2012;30(11):575–582.
  • Constantinou A, Chen C, Deonarain MP. Modulating the pharmacokinetics of therapeutic antibodies. Biotechnol Lett. 2010;32(5):609–622.
  • Lin K, Tibbitts J. Pharmacokinetic considerations for antibody drug conjugates. Pharm Res. 2012;29(9):2354–2366.
  • Cianfriglia M. Targeting MDR1-P-glycoprotein (MDR1-Pgp) in immunochemotherapy of acute myeloid leukemia (AML). Ann Ist Super Sanita. 2013;49(2):190–208.
  • Kovtun YV, Audette CA, Mayo MF, et al. Antibody-maytansinoid conjugates designed to bypass multidrug resistance. Cancer Res. 2010;70(6):2528–2537.
  • Tarragó-Trani MT, Storrie B. Alternate routes for drug delivery to the cell interior: pathways to the Golgi apparatus and endoplasmic reticulum. Adv Drug Deliv Rev. 2007;59(8):782–797.