189
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Analysis of Increased EGFR and IGF-1R Signaling and Its Correlation with Socio-Epidemiological Features and Biological Profile in Breast Cancer Patients: A Study in Northern Brazil

, , , ORCID Icon & ORCID Icon
Pages 325-339 | Published online: 21 May 2021

References

  • SungH, FerlayJ, SiegelRL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.2166033538338
  • DayCM, HickeySM, SongY, PlushSE, GargS. Novel tamoxifen nanoformulations for improving breast cancer treatment: old wine in new bottles. Molecules. 2020;25(5):1182. doi:10.3390/molecules25051182
  • HarbeckN, Penault-LlorcaF, CortesJ, et al. Breast cancer. Nat Rev Dis Prim. 2019;5(1):66. doi:10.1038/s41572-019-0111-231548545
  • WangL. Early diagnosis of breast cancer. Sensors. 2017;17:1572. doi:10.3390/s17071572
  • KoriechOM. Breast cancer and early detection. J Family Community Med. 1996;3(1):7–9.23008541
  • Santiago-MonteroR, SossaH, Gutiérrez-HernándezDA, ZamudioV, Hernández-BautistaI, Valadez-GodínezS. Novel mathematical model of breast cancer diagnostics using an associative pattern classification. Diagnostics. 2020;10:136. doi:10.3390/diagnostics10030136
  • LiX, ZhangP, DouL, WangL, SunK. Detection of circulating tumor cells in breast cancer patients by nanopore sensing with aptamer-mediated amplification. ACS Sensors. 2020;8:2359–2366. doi:10.1021/acssensors.9b02537
  • FanS, ShahidM, JinP, AsherA, KimJ. Identification of metabolic alterations in breast cancer using mass spectrometry-based metabolomic analysis. Metabolites. 2020;10(4):170. doi:10.3390/metabo10040170
  • SiegelRL, MillerKD, JemalA. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:5–29. doi:10.3322/caac.2125425559415
  • CossettiRJD, TyldesleySK, SpeersCH, ZhengY, GelmonKA. Comparison of breast cancer recurrence and outcome patterns between patients treated from 1986 to 1992 and from 2004 to 2008. J Clin Oncol. 2014;33:65–73. doi:10.1200/JCO.2014.57.246125422485
  • AllemaniC, WeirHK, CarreiraH, et al. Global surveillance of cancer survival 1995–2009: analysis of individual data for 25, 676, 887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet. 2015;385:977–1010. doi:10.1016/S0140-6736(14)62038-925467588
  • DonepudiMS, KondapalliK. Breast cancer statistics and markers. J Cancer Res Ther. 2014;10:506–511. doi:10.4103/0973-1482.13792725313729
  • HarrisLN, IsmailaN. Use of biomarkers to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2016;34:1134–1150. doi:10.1200/JCO.2015.65.228926858339
  • BryceCJ. Tamoxifen in early breast cancer. Lancet. 1998;352(9125):403. doi:10.1016/S0140-6736(05)60500-4
  • AbeO, AbeR, EnomotoK, et al. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365:1687–1717. doi:10.1016/S0140-6736(05)66544-015894097
  • HynesNE, MacDonaldG. ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol. 2009;21(2):177–184. doi:10.1016/j.ceb.2008.12.01019208461
  • BurgessAW. EGFR family: structure physiology signalling and therapeutic targets. Growth Factors. 2008;26:263–274. doi:10.1080/0897719080231284418800267
  • HanawaM, SuzukiS, DobashiY, YamaneT, KonoK. EGFR protein overexpression and gene amplification in squamous cell carcinomas of the esophagus. Int J Cancer. 2006;118(5):1173–1180. doi:10.1002/ijc.2145416161046
  • LevvaS, KotoulaV, KostopoulosI, et al. Prognostic evaluation of epidermal growth factor receptor (EGFR) genotype and phenotype parameters in triple-negative breast cancers. Cancer Genom Proteom. 2017;14:181–195. doi:10.21873/cgp.20030
  • HashmiAA, NazS, HashmiSK. Epidermal growth factor receptor (EGFR) overexpression in triple-negative breast cancer: association with clinicopathologic features and prognostic parameters. Surg Exp Pathol. 2019;2(1):6. doi:10.1186/s42047-018-0029-0
  • MasudaH, ZhangD, BartholomeuszC, Hiroyoshi DoiharaGN, NaotoT, UenoNT. Ueno. 2012. “Role of epidermal growth factor receptor in breast cancer.”. Breast Cancer Res Treat. 2012;136(2):331–345. doi:10.1007/s10549-012-2289-923073759
  • ChristopoulosPF, MsaouelP, KoutsilierisM. The role of the insulin-like growth factor-1 system in breast cancer. Mol Cancer. 2015;14(1):43. doi:10.1186/s12943-015-0291-725743390
  • ObrAE, KumarS, ChangY-J, et al. Insulin-like growth factor receptor signaling in breast tumor epithelium protects cells from endoplasmic reticulum stress and regulates the tumor microenvironment. Breast Cancer Res. 2018;20:138. doi:10.1186/s13058-018-1063-230458886
  • FranksSE, CampbellCI, BarnettEF, et al. Transgenic IGF-IR overexpression induces mammary tumors with basal-like characteristics, whereas IGF-IR-independent mammary tumors express a claudin-low gene signature. Oncogene. 2012;31(27):3298–3309. doi:10.1038/onc.2011.48622020329
  • FarabaughSM, BooneDN, LeeAV. Role of IGF1R in breast cancer subtypes, stemness, and lineage differentiation. Front Endocrinol. 2015;6:59. doi:10.3389/fendo.2015.00059
  • PereiraCBL, LealMF, AbdelhayESFW, et al. MYC amplification as a predictive factor of complete pathologic response to docetaxel-based neoadjuvant chemotherapy for breast cancer. Clin Breast Cancer. 2017;17:188–194. doi:10.1016/j.clbc.2016.12.00528089283
  • McShaneLM, AltmanDG, SauerbreiW, TaubeSE, GionM, ClarkGM. Reporting recommendations for tumour marker prognostic studies (REMARK). Br J Cancer. 2005;93:387–391. doi:10.1038/sj.bjc.660267816106245
  • LealMF, RibeiroHF, ReyJA. YWHAE silencing induces cell proliferation, invasion and migration through the up regulation of CDC25B and MYC in gastric cancer cells: new insights about YWHAE role in the tumor development and metastasis process. Oncotarget. 2016;7:85393–85410. doi:10.18632/oncotarget.1338127863420
  • ParkS, KooJS, KimMS, ParkHS, LeeJS, LeeJS. Characteristics and outcomes according to molecular subtypes of breast cancer as classified by a panel of four biomarkers using immunohistochemistry. The Breast. 2012;21:50–57. doi:10.1016/j.breast.2011.07.00821865043
  • CalcagnoDQ, LealMF, SeabraAD, et al. Interrelationship between chromosome 8 aneuploidy, C-MYC amplification and increased expression in individuals from northern Brazil with gastric adenocarcinoma. World J Gastroenterol. 2006;12:6207–6211. doi:10.3748/wjg17036397
  • LivakKJ, SchmittgenTD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25:402–408. doi:10.1006/meth.2001.126211846609
  • WallaceR. 22nd Brazilian Diabetes Society Congress. Diabetol Metab Syndr. 2019;11(S1). doi:10.1186/s13098-019-0473-3
  • De-la-cruz-kuG, LuyoM, MoranteZ, et al. “Triple-negative breast cancer in Peru: 2000 patients and 15 years of experience.”. PLoS One. 2020;15(8):e0237811. doi:10.1371/journal.pone.023781132833983
  • AndersonGL, MansonJ, WallaceR, et al. Prentice. 2003. “Implementation of the women’s health initiative study design.”. Ann Epidemiol. 2003;13(9):S5–17. doi:10.1016/s1047-2797(03)00043-714575938
  • WitschE, SelaM, YardenY. Roles for growth factors in cancer progression. Physiology. 2010;25(2):85–101. doi:10.1152/physiol.00045.200920430953
  • DavisNM, SokoloskyM, StadelmanK, et al. Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: possibilities for therapeutic intervention. Oncotarget. 2014;5:4603–4650. doi:10.18632/oncotarget.220925051360
  • CarotenutoP, RomaC, RachiglioAM, BottiG, D’AlessioA, NormannoN. Triple negative breast cancer: from molecular portrait to therapeutic intervention. Crit Rev Eukaryot Gene Expr. 2010;20:17–34. doi:10.1615/CritRevEukarGeneExpr.v2020528735
  • AysolaK, AkshataD, WelchK, et al. Triple negative breast cancer – an overview. Hered Genet. 2013;1(supl 2). doi:10.4172/2161-1041.s2-001
  • NakajimaH, IshikawaY, FuruyaM, SanoT. Protein expression, gene amplification, and mutational analysis of EGFR in triple-negative breast cancer. Breast Cancer. 2014;21:66–74. doi:10.1007/s12282-012-0354-122481575
  • GrobTJ, HeilenkötterU, GeistS, et al. Rare oncogenic mutations of predictive markers for targeted therapy in triple-negative breast cancer. Breast Cancer Res Treat. 2012;134(2):561–567. doi:10.1007/s10549-012-2092-722610646
  • SecqV, VilleretJ, FinaF, et al. Triple negative breast carcinoma EGFR amplification is not associated with EGFR, Kras or ALK mutations. Br J Cancer. 2014;110:1045–1052. doi:10.1038/bjc.2013.79424423920
  • JacotW, Lopez-CrapezE, ThezenasS, SenaiR, FinaF, BibeauF. Lack of EGFR-activating mutations in European patients with triple-negative breast cancer could emphasise geographic and ethnic variations in breast cancer mutation profiles. Breast Cancer Res. 2011;13:R133. doi:10.1186/bcr307922192147
  • TilchE, SeidensT, CocciardiS, ReideLE, ByrneD, SimpsonPT. Mutations in EGFR, BRAF and RAS are rare in triple-negative and basal-like breast cancers from Caucasian women. Breast Cancer Res Treat. 2014;143:385–392. doi:10.1007/s10549-013-2798-124318467
  • PerouCM, SørlieT, EisenMB, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–752. doi:10.1038/3502109310963602
  • SorlieT, PerouCM, TibshiraniR, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci. 2001;98(19):10869–10874. doi:10.1073/pnas.19136709811553815
  • SørlieT, TibshiraniR, ParkerJ, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci. 2003;100:8418–8423. doi:10.1073/pnas.093269210012829800
  • ZengY, TangC-H, WangY, et al. Combined High Resistin and EGFR Expression Predicts a Poor Prognosis in Breast Cancer. Biomed Res Int. 2020;2020(November):8835398. doi:10.1155/2020/883539833313320
  • WangC-Q, YangL, HuangB-F, et al. EGFR Conjunct FSCN1 as a Novel Therapeutic Strategy in Triple-Negative Breast Cancer. Sci Rep. 2017;7(1):15654. doi:10.1038/s41598-017-15939-929142206
  • PennisiPA, BarrV, NunezNP, StannardB, Le RoithD. Reduced expression of insulin-like growth factor I receptors in MCF-7 breast cancer cells leads to a more metastatic phenotype. Cancer Res. 2002;62(22):6529–6537.12438247
  • FrixenUH, BehrensJ, SachsM, EberleG, VossB, WandaA. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol. 1991;113:173–185. doi:10.1083/jcb.113.1.1732007622
  • ThieryJP, SleemanJP. Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131–142. doi:10.1038/nrm183516493418
  • SalvatiA, GigantinoV, NassaG, et al. Global view of candidate therapeutic target genes in hormone-responsive breast cancer. Int J Mol Sci. 2020;21:4068. doi:10.3390/ijms21114068
  • AlFakeehA, Brezden-MasleyC. Overcoming endocrine resistance in hormone receptor–positive breast cancer. Curr Oncol. 2018;25:18. doi:10.3747/co.25.3752