235
Views
0
CrossRef citations to date
0
Altmetric
Review

Challenges in Detection of Serum Oncoprotein: Relevance to Breast Cancer Diagnostics

, , , , , , & show all
Pages 575-593 | Published online: 14 Oct 2021

References

  • Society AC. 2021 Surveillance research. 2021.
  • Society AC. Facts and figures. 2021.
  • Force USPST. Screening for breast cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2009;151(10):716–26, W-236. doi:10.7326/0003-4819-151-10-200911170-00008
  • YipCH, CazapE, AndersonBO, et al. Breast cancer management in middle-resource countries (MRCs): consensus statement from the Breast Health Global Initiative. Breast. 2011;20(Suppl 2):S12–S19. doi:10.1016/j.breast.2011.02.015
  • YoshiharaN. [ELISA for diagnosis of infections by viruses]. Nihon Rinsho. 1995;53(9):2277–2282. Japanese.7474393
  • DwyerR. The ADVIA centaur infectious disease assays: a technical review. J Clin Virol. 2004;30(Suppl 1):S1–S5. doi:10.1016/j.jcv.2004.02.00215062760
  • PerrierA, GligorovJ, LefevreG, BoissanM. The extracellular domain of Her2 in serum as a biomarker of breast cancer. Lab Invest. 2018;98(6):696–707. doi:10.1038/s41374-018-0033-829491426
  • HuppiP, BologaL, HerschkowitzN. Serum antibodies to central nervous system antigens: an analysis of their relation with different human neurologic disorders. Neurochem Res. 1987;12(7):659–665. doi:10.1007/BF009710163614516
  • ZhangS, Garcia-D’AngeliA, BrennanJP, HuoQ. Predicting detection limits of enzyme-linked immunosorbent assay (ELISA) and bioanalytical techniques in general. Analyst. 2014;139(2):439–445. doi:10.1039/c3an01835k24308031
  • PorstmannT, KiessigST. Enzyme immunoassay techniques. An overview. J Immunol Methods. 1992;150(1–2):5–21. doi:10.1016/0022-1759(92)90061-w1613258
  • de la RicaR, StevensMM. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat Nanotechnol. 2012;7(12):821–824. doi:10.1038/nnano.2012.18623103935
  • SanoT, SmithCL, CantorCR. Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates. Science. 1992;258(5079):120–122. doi:10.1126/science.14397581439758
  • DuanY, WuW, ZhaoQ, et al. Enzyme-antibody-modified gold nanoparticle probes for the ultrasensitive detection of nucleocapsid protein in SFTSV. Int J Environ Res Public Health. 2020;17(12):4427. doi:10.3390/ijerph17124427
  • WangW, LiJ, DongC, et al. Ultrasensitive ELISA for the detection of hCG based on assembled gold nanoparticles induced by functional polyamidoamine dendrimers. Anal Chim Acta. 2018;1042:116–124. doi:10.1016/j.aca.2018.08.03830428978
  • ZhangH, ChengX, RichterM, GreeneMI. A sensitive and high-throughput assay to detect low-abundance proteins in serum. Nat Med. 2006;12(4):473–477. doi:10.1038/nm137816532003
  • NormanRA, AmbrosettiF, BonvinA, et al. Computational approaches to therapeutic antibody design: established methods and emerging trends. Brief Bioinform. 2020;21(5):1549–1567. doi:10.1093/bib/bbz09531626279
  • EngvallE, PerlmannP. Enzyme-linked immunosorbent assay, Elisa. 3. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes. J Immunol. 1972;109(1):129–135.4113792
  • KohlTO, AscoliCA. Indirect competitive enzyme-linked immunosorbent assay (ELISA). Cold Spring Harb Protoc. 2017;2017(7):pdbprot093757. doi:10.1101/pdb.prot093757
  • DucancelF, MullerBH. Molecular engineering of antibodies for therapeutic and diagnostic purposes. MAbs. 2012;4(4):445–457. doi:10.4161/mabs.2077622684311
  • FengL, WangX, JinH. Rabbit monoclonal antibody: potential application in cancer therapy. Am J Transl Res. 2011;3(3):269–274.21633632
  • RossiS, LaurinoL, FurlanettoA, et al. Rabbit monoclonal antibodies: a comparative study between a novel category of immunoreagents and the corresponding mouse monoclonal antibodies. Am J Clin Pathol. 2005;124(2):295–302. doi:10.1309/NR8H-N08G-DPVE-MU0816040303
  • Vilches-MoureJG, Ramos-VaraJA. Comparison of rabbit monoclonal and mouse monoclonal antibodies in immunohistochemistry in canine tissues. J Vet Diagn Invest. 2005;17(4):346–350. doi:10.1177/10406387050170040716130992
  • RiefN, WaschowC, NastainczykW, MontenarhM, GotzC. Production and characterization of a rabbit monoclonal antibody against human CDC25C phosphatase. Hybridoma. 1998;17(4):389–394. doi:10.1089/hyb.1998.17.3899790074
  • BlakeMS, JohnstonKH, Russell-JonesGJ, GotschlichEC. A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. Anal Biochem. 1984;136(1):175–179. doi:10.1016/0003-2697(84)90320-86424501
  • ColemanJE. Structure and mechanism of alkaline phosphatase. Annu Rev Biophys Biomol Struct. 1992;21:441–483. doi:10.1146/annurev.bb.21.060192.0023011525473
  • WildD. The Immunoassay Handbook: Theory and Applications of Ligand Binding, ELISA and Related Techniques. Newnes; 2013.
  • DimeskiG. Interference testing. Clin Biochem Rev. 2008;29(Suppl 1):S43–8.18852856
  • EmersonJF, LaiKKY. Endogenous antibody interferences in immunoassays. Lab Med. 2013;44(1):69–73. doi:10.1309/lmmurcfqhksb5yec
  • Diagnostics R. Serum indices: reduction of clinical errors in laboratory medicine. 2012.
  • SpainMA, WuAH. Bilirubin interference with determination of uric acid, cholesterol, and triglycerides in commercial peroxidase-coupled assays, and the effect of ferrocyanide. Clin Chem. 1986;32(3):518–521. doi:10.1093/clinchem/32.3.5183948397
  • BerthM, BosmansE, EveraertJ, et al. Rheumatoid factor interference in the determination of carbohydrate antigen 19-9 (CA 19-9). Clin Chem Lab Med. 2006;44(9):1137–1139. doi:10.1515/CCLM.2006.20516958610
  • XuL, YuZ, FanW, et al. Negative interference in serum HBsAg ELISA from rheumatoid factors. PLoS One. 2013;8(11):e80620. doi:10.1371/journal.pone.008062024260439
  • LassarreC, BinouxM. Measurement of intact insulin-like growth factor-binding protein-3 in human plasma using a ligand immunofunctional assay. J Clin Endocrinol Metab. 2001;86(3):1260–1266. doi:10.1210/jcem.86.3.736211238518
  • ZhangH, FuT, McGettiganS, et al. IL-8 and cathepsin B as melanoma serum biomarkers. Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t. Int J Mol Sci. 2011;12(3):1505–1518. doi:10.3390/ijms1203150521673904
  • LamL, CzernieckiBJ, FitzpatrickE, et al. Interference-free HER2 ECD as a serum biomarker in breast cancer. J Mol Biomark Diagn. 2014;4(3):151. doi:10.4172/2155-9929.100015125089226
  • KleeGG. Human anti-mouse antibodies. Arch Pathol Lab Med. 2000;124(6):921–923. doi:10.1043/0003-9985(2000)124<0921:HAMA>2.0.CO;210835540
  • LichtigerB, RoggeK. Spurious serologic test results in patients receiving infusions of intravenous immune gammaglobulin. Arch Pathol Lab Med. 1991;115(5):467–469.2021315
  • LichtigerB. Laboratory serologic problems associated with administration of intravenous IgG. Curr Iss Transfus Med. 1994;3:1–7.
  • AgnolonV, ContatoA, MeneghelloA, et al. ELISA assay employing epitope-specific monoclonal antibodies to quantify circulating HER2 with potential application in monitoring cancer patients undergoing therapy with trastuzumab. Sci Rep. 2020;10(1):1–12. doi:10.1038/s41598-020-59630-y31913322
  • MillsJR, MurrayDL. Identification of friend or foe: the laboratory challenge of differentiating M-proteins from monoclonal antibody therapies. J Appl Lab Med. 2017;1(4):421–431. doi:10.1373/jalm.2016.02078433636806
  • van de DonkNW, MoreauP, PlesnerT, et al. Clinical efficacy and management of monoclonal antibodies targeting CD38 and SLAMF7 in multiple myeloma. Blood. 2016;127(6):681–695. doi:10.1182/blood-2015-10-64681026631114
  • LamL, McAndrewN, YeeM, FuT, TchouJC, ZhangH. Challenges in the clinical utility of the serum test for HER2 ECD. Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review. Biochim Biophys Acta. 2012;1826(1):199–208. doi:10.1016/j.bbcan.2012.03.01222521738
  • SturgeonCM, DuffyMJ, StenmanUH, et al. National Academy of Clinical Biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancers. Clin Chem. 2008;54(12):e11–e79. doi:10.1373/clinchem.2008.10560119042984
  • MolinaR, AugeJM, EscuderoJM, et al. Evaluation of tumor markers (HER-2/neu oncoprotein, CEA, and CA 15.3) in patients with locoregional breast cancer: prognostic value. Tumour Biol. 2010;31(3):171–180. doi:10.1007/s13277-010-0025-920361287
  • RockbergJ, SchwenkJM, UhlenM. Discovery of epitopes for targeting the human epidermal growth factor receptor 2 (HER2) with antibodies. Mol Oncol. 2009;3(3):238–247. doi:10.1016/j.molonc.2009.01.00319393584
  • CarpenterG. Receptors for epidermal growth factor and other polypeptide mitogens. Annu Rev Biochem. 1987;56:881–914. doi:10.1146/annurev.bi.56.070187.0043133039909
  • PerrierA, BoellePY, ChretienY, et al. An updated evaluation of serum sHER2, CA15.3, and CEA levels as biomarkers for the response of patients with metastatic breast cancer to trastuzumab-based therapies. PLoS One. 2020;15(1):e0227356. doi:10.1371/journal.pone.022735631910438
  • Eppenberger-CastoriS, KlingbielD, RuhstallerT, et al. Plasma HER2ECD a promising test for patient prognosis and prediction of response in HER2 positive breast cancer: results of a randomized study - SAKK 22/99. BMC Cancer. 2020;20(1):114. doi:10.1186/s12885-020-6594-032046665
  • ReixN, MalinaC, ChenardMP, et al. A prospective study to assess the clinical utility of serum HER2 extracellular domain in breast cancer with HER2 overexpression. Breast Cancer Res Treat. 2016;160(2):249–259. doi:10.1007/s10549-016-4000-z27709352
  • MazouniC, HallA, BroglioK, et al. Kinetics of serum HER-2/neu changes in patients with HER-2-positive primary breast cancer after initiation of primary chemotherapy. Cancer. 2007;109(3):496–501. doi:10.1002/cncr.2241817149760
  • WitzelI, LoiblS, von MinckwitzG, et al. Monitoring serum HER2 levels during neoadjuvant trastuzumab treatment within the GeparQuattro trial. Breast Cancer Res Treat. 2010;123(2):437–445. doi:10.1007/s10549-010-1030-920623180
  • HaoY, YuX, BaiY, McBrideHJ, HuangX. Cryo-EM structure of HER2-trastuzumab-pertuzumab complex. PLoS One. 2019;14(5):e0216095. doi:10.1371/journal.pone.021609531042744
  • LeeBS, HuangJS, JayathilakaLP, LeeJ, GuptaS. Antibody production with synthetic peptides. Methods Mol Biol. 2016;1474:25–47. doi:10.1007/978-1-4939-6352-2_227515072
  • LiangTC, LuoW, HsiehJT, LinSH. Antibody binding to a peptide but not the whole protein by recognition of the C-terminal carboxy group. Arch Biochem Biophys. 1996;329(2):208–214. doi:10.1006/abbi.1996.02108638953
  • PeirisD, SpectorAF, Lomax-BrowneH, et al. Cellular glycosylation affects Herceptin binding and sensitivity of breast cancer cells to doxorubicin and growth factors. Sci Rep. 2017;7:43006. doi:10.1038/srep4300628223691
  • ManceurAP, ZouW, MarcilA, et al. Generation of monoclonal pan-hemagglutinin antibodies for the quantification of multiple strains of influenza. PLoS One. 2017;12(6):e0180314. doi:10.1371/journal.pone.018031428662134
  • PonR, MarcilA, ChenW, et al. Masking terminal neo-epitopes of linear peptides through glycosylation favours immune responses towards core epitopes producing parental protein bound antibodies. Sci Rep. 2020;10(1):18497. doi:10.1038/s41598-020-75754-733116268
  • ChaiL, MaoQ, LiuS, XiaH. Domain-specific monoclonal antibodies produced against human PGRN. Hybridoma (Larchmt). 2011;30(3):271–278. doi:10.1089/hyb.2010.011221707362
  • DaiX, LiY, SunX, CaiK, MaoQ, XiaH. Generation of domain-specific monoclonal antibodies against human glutaredoxin3. Monoclon Antib Immunodiagn Immunother. 2016;35(6):285–292. doi:10.1089/mab.2016.003227923109
  • GeysenHM, RoddaSJ, MasonTJ, TribbickG, SchoofsPG. Strategies for epitope analysis using peptide synthesis. J Immunol Methods. 1987;102(2):259–274. doi:10.1016/0022-1759(87)90085-82443575
  • RadfordAJ, WoodPR, Billman-JacobeH, GeysenHM, MasonTJ, TribbickG. Epitope mapping of the Mycobacterium bovis secretory protein MPB70 using overlapping peptide analysis. J Gen Microbiol. 1990;136(2):265–272. doi:10.1099/00221287-136-2-2651691265
  • TribbickG, TriantafyllouB, LauricellaR, RoddaSJ, MasonTJ, GeysenHM. Systematic fractionation of serum antibodies using multiple antigen homologous peptides as affinity ligands. J Immunol Methods. 1991;139(2):155–166. doi:10.1016/0022-1759(91)90185-i1904463
  • ReinekeU, KramerA, Schneider-MergenerJ. Antigen sequence- and library-based mapping of linear and discontinuous protein-protein-interaction sites by spot synthesis. Curr Top Microbiol Immunol. 1999;243:23–36. doi:10.1007/978-3-642-60142-2_210453636
  • PausD, WinterG. Mapping epitopes and antigenicity by site-directed masking. Proc Natl Acad Sci U S A. 2006;103(24):9172–9177. doi:10.1073/pnas.060026310316754878
  • LiP, LiY, LiJY, LiuJ. Characterization and utilization of two novel anti-erbB-2 monoclonal antibodies in detection of soluble ErbB-2 for breast cancer prognosis. Cancer Lett. 2003;193(2):139–148. doi:10.1016/s0304-3835(03)00017-x12706870
  • AgnolonV, ContatoA, MeneghelloA, et al. ELISA assay employing epitope-specific monoclonal antibodies to quantify circulating HER2 with potential application in monitoring cancer patients undergoing therapy with trastuzumab. Sci Rep. 2020;10(1):3016. doi:10.1038/s41598-020-59630-y32080226
  • SmithGP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985;228(4705):1315–1317. doi:10.1126/science.40019444001944
  • ChenL, ZhuC, GuoH, et al. Epitope-directed antibody selection by site-specific photocrosslinking. Sci Adv. 2020;6(14):eaaz7825. doi:10.1126/sciadv.aaz782532270046
  • HuS, ZhuZ, LiL, et al. Epitope mapping and structural analysis of an anti-ErbB2 antibody A21: molecular basis for tumor inhibitory mechanism. Proteins. 2008;70(3):938–949. doi:10.1002/prot.2155117847085
  • XuF, LupuR, RodriguezGC, et al. Antibody-induced growth inhibition is mediated through immunochemically and functionally distinct epitopes on the extracellular domain of the c-erbB-2 (HER-2/neu) gene product p185. Int J Cancer. 1993;53(3):401–408. doi:10.1002/ijc.29105303107679090
  • BoyerCM, PusztaiL, WienerJR, et al. Relative cytotoxic activity of immunotoxins reactive with different epitopes on the extracellular domain of the c-erbB-2 (HER-2/neu) gene product p185. Int J Cancer. 1999;82(4):525–531. doi:10.1002/(sici)1097-0215(19990812)82:4<525::aid-ijc10>3.0.co;2-j10404066
  • KlapperLN, VaismanN, HurwitzE, Pinkas-KramarskiR, YardenY, SelaM. A subclass of tumor-inhibitory monoclonal antibodies to ErbB-2/HER2 blocks crosstalk with growth factor receptors. Oncogene. 1997;14(17):2099–2109. doi:10.1038/sj.onc.12010299160890
  • YipYL, NovotnyJ, EdwardsM, WardRL. Structural analysis of the ErbB-2 receptor using monoclonal antibodies: implications for receptor signalling. Int J Cancer. 2003;104(3):303–309. doi:10.1002/ijc.1095112569553
  • WangJN, FengJN, YuM, et al. Structural analysis of the epitopes on erbB2 interacted with inhibitory or non-inhibitory monoclonal antibodies. Mol Immunol. 2004;40(13):963–969. doi:10.1016/j.molimm.2003.09.01214725792
  • Lewis PhillipsG, McMurtreyA, SchroederK, FendlyB. Diverse activities of anti-HER2 monoclonal antibodies: from growth inhibition to induction of apoptosis. Proc Am Assoc Cancer Res. 1998;39:143.
  • PantazesRJ, MaranasCD. OptCDR: a general computational method for the design of antibody complementarity determining regions for targeted epitope binding. Protein Eng Des Sel. 2010;23(11):849–858. doi:10.1093/protein/gzq06120847101
  • LapidothGD, BaranD, PszollaGM, et al. AbDesign: an algorithm for combinatorial backbone design guided by natural conformations and sequences. Proteins. 2015;83(8):1385–1406. doi:10.1002/prot.2477925670500
  • Adolf-BryfogleJ, KalyuzhniyO, KubitzM, et al. RosettaAntibodyDesign (RAbD): a general framework for computational antibody design. PLoS Comput Biol. 2018;14(4):e1006112. doi:10.1371/journal.pcbi.100611229702641
  • SevyAM, MeilerJ, Crowe Jr.JE, BoraschiD, RappuoliR. Antibodies: computer-aided prediction of structure and design of function. Microbiol Spectr. 2014;2(6). doi:10.1128/microbiolspec.AID-0024-2014
  • Sela-CulangI, AshkenaziS, PetersB, OfranY. PEASE: predicting B-cell epitopes utilizing antibody sequence. Bioinformatics. 2015;31(8):1313–1315. doi:10.1093/bioinformatics/btu79025432167
  • KrawczykK, LiuX, BakerT, ShiJ, DeaneCM. Improving B-cell epitope prediction and its application to global antibody-antigen docking. Bioinformatics. 2014;30(16):2288–2294. doi:10.1093/bioinformatics/btu19024753488
  • HuaCK, GacerezAT, SentmanCL, AckermanME, ChoiY, Bailey-KelloggC. Computationally-driven identification of antibody epitopes. Elife. 2017;6. doi:10.7554/eLife.29023.
  • BaranD, PszollaMG, LapidothGD, et al. Principles for computational design of binding antibodies. Proc Natl Acad Sci U S A. 2017;114(41):10900–10905. doi:10.1073/pnas.170717111428973872
  • ChowdhuryR, AllanMF, MaranasCD. OptMAVEn-2.0: de novo design of variable antibody regions against targeted antigen epitopes. Antibodies (Basel). 2018;7(3). doi:10.3390/antib7030023
  • AhmadZA, YeapSK, AliAM, HoWY, AlitheenNB, HamidM. scFv antibody: principles and clinical application. Clin Dev Immunol. 2012;2012:980250. doi:10.1155/2012/98025022474489
  • TuB, ZiemannRN, TiemanBC, et al. Generation and characterization of chimeric antibodies against NS3, NS4, NS5, and core antigens of hepatitis C virus. Clin Vaccine Immunol. 2010;17(6):1040–1047. doi:10.1128/CVI.00068-1020427624
  • KarnAE, BellCW, ChinTF. Recombinant antibody technology. ILAR J. 1995;37(3):132–141. doi:10.1093/ilar.37.3.13211528033
  • FernandesJC. Therapeutic application of antibody fragments in autoimmune diseases: current state and prospects. Drug Discov Today. 2018;23(12):1996–2002. doi:10.1016/j.drudis.2018.06.00329890227
  • NelsonAL. Antibody fragments: hope and hype. MAbs. 2010;2(1):77–83. doi:10.4161/mabs.2.1.1078620093855
  • NelsonAL, DhimoleaE, ReichertJM. Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov. 2010;9(10):767–774. doi:10.1038/nrd322920811384
  • Bazin-RedureauMI, RenardCB, ScherrmannJM. Pharmacokinetics of heterologous and homologous immunoglobulin G, F(ab’)2 and Fab after intravenous administration in the rat. J Pharm Pharmacol. 1997;49(3):277–281. doi:10.1111/j.2042-7158.1997.tb06795.x9231345
  • MannikM, NardellaFA, SassoEH. Rheumatoid factors in immune complexes of patients with rheumatoid arthritis. Springer Semin Immunopathol. 1988;10(2–3):215–230. doi:10.1007/BF018572263055378
  • Montoliu-GayaL, Esquerda-CanalsG, BronsomsS, VillegasS. Production of an anti-Abeta antibody fragment in Pichia pastoris and in vitro and in vivo validation of its therapeutic effect. PLoS One. 2017;12(8):e0181480. doi:10.1371/journal.pone.018148028771492
  • MechalyA, ZahavyE, FisherM. Development and implementation of a single-chain Fv antibody for specific detection of Bacillus anthracis spores. Appl Environ Microbiol. 2008;74(3):818–822. doi:10.1128/AEM.01244-0717965209
  • HoltLJ, HerringC, JespersLS, WoolvenBP, TomlinsonIM. Domain antibodies: proteins for therapy. Trends Biotechnol. 2003;21(11):484–490. doi:10.1016/j.tibtech.2003.08.00714573361
  • BarthelemyPA, RaabH, AppletonBA, et al. Comprehensive analysis of the factors contributing to the stability and solubility of autonomous human VH domains. J Biol Chem. 2008;283(6):3639–3654. doi:10.1074/jbc.M70853620018045863
  • StreltsovVA, CarmichaelJA, NuttallSD. Structure of a shark IgNAR antibody variable domain and modeling of an early-developmental isotype. Protein Sci. 2005;14(11):2901–2909. doi:10.1110/ps.05170950516199666
  • De GenstE, SilenceK, DecanniereK, et al. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci U S A. 2006;103(12):4586–4591. doi:10.1073/pnas.050537910316537393
  • DesmyterA, TransueTR, GhahroudiMA, et al. Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nat Struct Biol. 1996;3(9):803–811. doi:10.1038/nsb0996-8038784355
  • StrokappeN, SzynolA, Aasa-ChapmanM, et al. Llama antibody fragments recognizing various epitopes of the CD4bs neutralize a broad range of HIV-1 subtypes A, B and C. PLoS One. 2012;7(3):e33298. doi:10.1371/journal.pone.003329822438910
  • VanlandschootP, StortelersC, BeirnaertE, et al. Nanobodies(R): new ammunition to battle viruses. Antiviral Res. 2011;92(3):389–407. doi:10.1016/j.antiviral.2011.09.00221939690
  • GoldmanER, AndersonGP, LiuJL, et al. Facile generation of heat-stable antiviral and antitoxin single domain antibodies from a semisynthetic llama library. Anal Chem. 2006;78(24):8245–8255. doi:10.1021/ac061005317165813
  • PerfezouM, TurnerA, MerkociA. Cancer detection using nanoparticle-based sensors. Chem Soc Rev. 2012;41(7):2606–2622. doi:10.1039/c1cs15134g21796315
  • AragayG, PinoF, MerkociA. Nanomaterials for sensing and destroying pesticides. Chem Rev. 2012;112(10):5317–5338. doi:10.1021/cr300020c22897703
  • GaoZ, XuM, HouL, ChenG, TangD. Magnetic bead-based reverse colorimetric immunoassay strategy for sensing biomolecules. Anal Chem. 2013;85(14):6945–6952. doi:10.1021/ac401433p23806145
  • DeshpandeS. Enzyme Immunoassays: From Concept to Product Development. Springer Science & Business Media; 1996.
  • MalashikhinaN, Garai-IbabeG, PavlovV. Unconventional application of conventional enzymatic substrate: first fluorogenic immunoassay based on enzymatic formation of quantum dots. Anal Chem. 2013;85(14):6866–6870. doi:10.1021/ac401134223767913
  • BobrowMN, HarrisTD, ShaughnessyKJ, LittGJ. Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays. J Immunol Methods. 1989;125(1–2):279–285. doi:10.1016/0022-1759(89)90104-x2558138
  • BobrowMN, ShaughnessyKJ, LittGJ. Catalyzed reporter deposition, a novel method of signal amplification. II. Application to membrane immunoassays. J Immunol Methods. 1991;137(1):103–112. doi:10.1016/0022-1759(91)90399-z1849153
  • CiaurrizP, FernandezF, TellecheaE, MoranJF, AsensioAC. Comparison of four functionalization methods of gold nanoparticles for enhancing the enzyme-linked immunosorbent assay (ELISA). Beilstein J Nanotechnol. 2017;8:244–253. doi:10.3762/bjnano.8.2728243563
  • WilletsKA, Van DuyneRP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem. 2007;58:267–297. doi:10.1146/annurev.physchem.58.032806.10460717067281
  • MayerKM, HafnerJH. Localized surface plasmon resonance sensors. Chem Rev. 2011;111(6):3828–3857. doi:10.1021/cr100313v21648956
  • HutterE, FendlerJH. Exploitation of localized surface plasmon resonance. Adv Mater. 2004;16(19):1685–1706. doi:10.1002/adma.200400271
  • SatijaJ, PunjabiN, MishraD, MukherjiS. Plasmonic-ELISA: expanding horizons. RSC Adv. 2016;6(88):85440–85456. doi:10.1039/C6RA16750K
  • PetryayevaE, KrullUJ. Localized surface plasmon resonance: nanostructures, bioassays and biosensing–a review. Anal Chim Acta. 2011;706(1):8–24. doi:10.1016/j.aca.2011.08.02021995909
  • AnkerJN, HallWP, LyandresO, ShahNC, ZhaoJ, Van DuyneRP. Biosensing with plasmonic nanosensors. Nat Mater. 2008;7(6):442–453. doi:10.1038/nmat216218497851
  • SatijaJ, BharadwajR, SaiV, MukherjiS. Emerging use of nanostructure films containing capped gold nanoparticles in biosensors. Nanotechnol Sci Appl. 2010;3:171–188. doi:10.2147/NSA.S898124198481
  • LiuD, WangZ, JinA, et al. Acetylcholinesterase-catalyzed hydrolysis allows ultrasensitive detection of pathogens with the naked eye. Angew Chem Int Ed Engl. 2013;52(52):14065–14069. doi:10.1002/anie.20130795224155243
  • NieXM, HuangR, DongCX, TangLJ, GuiR, JiangJH. Plasmonic ELISA for the ultrasensitive detection of Treponema pallidum. Biosens Bioelectron. 2014;58:314–319. doi:10.1016/j.bios.2014.03.00724662060
  • LinS, ChengY, LiuJ, WiesnerMR. Polymeric coatings on silver nanoparticles hinder autoaggregation but enhance attachment to uncoated surfaces. Langmuir. 2012;28(9):4178–4186. doi:10.1021/la202884f22242766
  • WuJ, ChenY, WangY, et al. Poly-L-lysine brushes on magnetic nanoparticles for ultrasensitive detection of Escherichia coli O157: H7. Talanta. 2017;172:53–60. doi:10.1016/j.talanta.2017.05.03528602303
  • WeiH, WangE. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev. 2013;42(14):6060–6093. doi:10.1039/c3cs35486e23740388
  • LienCW, HuangCC, ChangHT. Peroxidase-mimic bismuth-gold nanoparticles for determining the activity of thrombin and drug screening. Chem Commun (Camb). 2012;48(64):7952–7954. doi:10.1039/c2cc32833j22760735
  • DongYL, ZhangHG, RahmanZU, et al. Graphene oxide-Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale. 2012;4(13):3969–3976. doi:10.1039/c2nr12109c22627993
  • SongY, QuK, ZhaoC, RenJ, QuX. Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater. 2010;22(19):2206–2210. doi:10.1002/adma.20090378320564257
  • QuanH, ZuoC, LiT, et al. Electrochemical detection of carcinoembryonic antigen based on silver nanocluster/horseradish peroxidase nanocomposite as signal probe. Electrochim Acta. 2015;176:893–897. doi:10.1016/j.electacta.2015.07.086
  • HuangY, DingY, LiT, YangM. Redox hydrogel based immunosensing platform for the label-free detection of a cancer biomarker. Analytical Methods. 2015;7(2):411–415. doi:10.1039/C4AY02640C
  • GuoQ, LiX, ShenC, et al. Electrochemical immunoassay for the protein biomarker mucin 1 and for MCF-7 cancer cells based on signal enhancement by silver nanoclusters. Microchimica Acta. 2015;182(7–8):1483–1489. doi:10.1007/s00604-015-1471-2
  • YeH, YangK, TaoJ, et al. An enzyme-free signal amplification technique for ultrasensitive colorimetric assay of disease biomarkers. ACS Nano. 2017;11(2):2052–2059. doi:10.1021/acsnano.6b0823228135070
  • NikitinaIG, SabirovaE, SolopovaON, et al. [A new immuno-PCR format for serological diagnosis of colon cancer]. Mol Biol (Mosk). 2014;48(1):117–123. Russian. doi:10.1134/S002689331306009525842832
  • NiemeyerCM, AdlerM, PignataroB, et al. Self-assembly of DNA-streptavidin nanostructures and their use as reagents in immuno-PCR. Nucleic Acids Res. 1999;27(23):4553–4561. doi:10.1093/nar/27.23.455310556310
  • GullbergM, GustafsdottirSM, SchallmeinerE, et al. Cytokine detection by antibody-based proximity ligation. Proc Natl Acad Sci U S A. 2004;101(22):8420–8424. doi:10.1073/pnas.040055210115155907
  • SoderbergO, GullbergM, JarviusM, et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods. 2006;3(12):995–1000. doi:10.1038/nmeth94717072308
  • GehwolfR, BandE, TrostA, et al. TaqManR proximity ligation technology for the detection of heterodimeric adhesion receptors on lymphocytes. J Immunol Methods. 2014;404:81–86. doi:10.1016/j.jim.2013.11.02424295822
  • JiangX, ChengS, ChenW, WangL, ShiF, ZhuC. Comparison of oligonucleotide-labeled antibody probe assays for prostate-specific antigen detection. Anal Biochem. 2012;424(1):1–7. doi:10.1016/j.ab.2012.02.00422343190
  • TongQH, TaoT, XieLQ, LuHJ. ELISA-PLA: a novel hybrid platform for the rapid, highly sensitive and specific quantification of proteins and post-translational modifications. Biosens Bioelectron. 2016;80:385–391. doi:10.1016/j.bios.2016.02.00626866564
  • HeX, QiW, QuinonesB, McMahonS, CooleyM, MandrellRE. Sensitive detection of Shiga Toxin 2 and some of its variants in environmental samples by a novel immuno-PCR assay. Appl Environ Microbiol. 2011;77(11):3558–3564. doi:10.1128/AEM.02205-1021441317
  • HeX, McMahonS, McKeonTA, BrandonDL. Development of a novel immuno-PCR assay for detection of ricin in ground beef, liquid chicken egg, and milk. J Food Prot. 2010;73(4):695–700. doi:10.4315/0362-028x-73.4.69520377958
  • SawadaT, NishiharaT, YamamotoA, et al. Preoperative clinical radioimmunodetection of pancreatic cancer by 111 in-labeled chimeric monoclonal antibody Nd2. Jpn J Cancer Res. 1999;90(10):1179–1186. doi:10.1111/j.1349-7006.1999.tb00693.x10595748
  • LiuH, ZhangL, XuY, et al. Sandwich immunoassay coupled with isothermal exponential amplification reaction: an ultrasensitive approach for determination of tumor marker MUC1. Talanta. 2019;204:248–254. doi:10.1016/j.talanta.2019.06.00131357289
  • DingYZ, LiuYS, ZhouJH, et al. A highly sensitive detection for foot-and-mouth disease virus by gold nanoparticle improved immuno-PCR. Virol J. 2011;8:148. doi:10.1186/1743-422X-8-14821453461
  • NamJM, ParkSJ, MirkinCA. Bio-barcodes based on oligonucleotide-modified nanoparticles. J Am Chem Soc. 2002;124(15):3820–3821. doi:10.1021/ja017876611942805
  • PerezJW, VargisEA, RussPK, HaseltonFR, WrightDW. Detection of respiratory syncytial virus using nanoparticle amplified immuno-polymerase chain reaction. Anal Biochem. 2011;410(1):141–148. doi:10.1016/j.ab.2010.11.03321111702
  • NiemeyerCM, AdlerM, WackerR. Detecting antigens by quantitative immuno-PCR. Nat Protoc. 2007;2(8):1918–1930. doi:10.1038/nprot.2007.26717703203
  • GoodmanSL. The antibody horror show: an introductory guide for the perplexed. N Biotechnol. 2018;45:9–13. doi:10.1016/j.nbt.2018.01.00629355666
  • SchonbrunnA. Editorial: antibody can get it right: confronting problems of antibody specificity and irreproducibility. Mol Endocrinol. 2014;28(9):1403–1407. doi:10.1210/me.2014-123025184858
  • TaussigMJ, FonsecaC, TrimmerJS. Antibody validation: a view from the mountains. N Biotechnol. 2018;45:1–8. doi:10.1016/j.nbt.2018.08.00230086383
  • SchechterAL, SternDF, VaidyanathanL, et al. The neu oncogene: an erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature. 1984;312(5994):513–516. doi:10.1038/312513a06095109
  • DrebinJA, LinkVC, WeinbergRA, GreeneMI. Inhibition of tumor growth by a monoclonal antibody reactive with an oncogene-encoded tumor antigen. Proc Natl Acad Sci U S A. 1986;83(23):9129–9133. doi:10.1073/pnas.83.23.91293466178
  • ChemnitzJM, ParryRV, NicholsKE, JuneCH, RileyJL. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol. 2004;173(2):945–954. doi:10.4049/jimmunol.173.2.94515240681
  • GrizziF, CastelloA, QehajajD, et al. Independent expression of circulating and tissue levels of PD-L1: correlation of clusters with tumor metabolism and outcome in patients with non-small cell lung cancer. Cancer Immunol Immunother. 2019;68(9):1537–1545. doi:10.1007/s00262-019-02387-931482306
  • VecchiarelliS, PassigliaF, D’InceccoA, et al. Circulating programmed death ligand-1 (cPD-L1) in non-small-cell lung cancer (NSCLC). Oncotarget. 2018;9(25):17554–17563. doi:10.18632/oncotarget.2478529707129
  • MokuP, ShepherdL, AliSM, et al. Higher serum PD-L1 level predicts increased overall survival with lapatinib versus trastuzumab in the CCTG MA.31 phase 3 trial. Cancer. 2020;126(22):4859–4866. doi:10.1002/cncr.3314932910476
  • ErikssonS, WittfoothS, PetterssonK. Present and future biochemical markers for detection of acute coronary syndrome. Crit Rev Clin Lab Sci. 2006;43(5–6):427–495. doi:10.1080/1040836060079308217043039
  • MelansonSE, TanasijevicMJ, JarolimP. Cardiac troponin assays: a view from the clinical chemistry laboratory. Circulation. 2007;116(18):e501–e504. doi:10.1161/CIRCULATIONAHA.107.72297517967982
  • McDonnellB, HeartyS, LeonardP, O’KennedyR. Cardiac biomarkers and the case for point-of-care testing. Clin Biochem. 2009;42(7–8):549–561. doi:10.1016/j.clinbiochem.2009.01.01919318022
  • MoyanoA, Serrano-PertierraE, SalvadorM, Martinez-GarciaJC, RivasM, Blanco-LopezMC. Magnetic lateral flow immunoassays. Diagnostics (Basel). 2020;10(5). doi:10.3390/diagnostics10050288
  • World Health Organization. Early Cancer Diagnosis Saves Lives, Cuts Treatment Costs. World Health Organization; 2017.
  • Cho HS, Mason K, Ramyar KX, et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature. 2003;421(6924): 756–760
  • Franklin MC, Carey KD, Vajdos FF, Leahy DJ, de Vos AM, Sliwkowski MX. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell. 2004;5(4): 317–328.