85
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Amplifying Immune Responses: Microparticulate Vaccine Approach Against Breast Cancer

, , , & ORCID Icon
Pages 149-162 | Received 04 Jan 2024, Accepted 16 Mar 2024, Published online: 28 Mar 2024

References

  • Cancer stat facts: female Breast Cancer. 2023; Available from: https://seer.cancer.gov/statfacts/html/breast.html. Accessed September 21, 2023.
  • Control DoCPa. Breast Cancer Statistics. [Webpage]; 2020.
  • Ernst B, Anderson KS. Immunotherapy for the treatment of breast cancer. Curr Oncol Rep. 2015;17(2):5. doi:10.1007/s11912-014-0426-9
  • Cimino-Mathews A, Foote JB, Emens LA. Immune targeting in breast cancer. Oncology. 2015;29(5):375–385.
  • Dillon PM, Brenin CM, Slingluff CL Jr. Evaluating nelipepimut-s in the treatment of Breast Cancer: a short report on the emerging data. Breast Cancer. 2020;12:69–75. doi:10.2147/BCTT.S224758
  • Mittendorf EA, Clifton GT, Holmes JP, et al. Final report of the phase I/II clinical trial of the E75 (nelipepimut-S) vaccine with booster inoculations to prevent disease recurrence in high-risk breast cancer patients. Ann Oncol. 2014;25(9):1735–1742. doi:10.1093/annonc/mdu211
  • Nie X, Shi C, Chen X, et al. A single-shot prophylactic tumor vaccine enabled by an injectable biomembrane hydrogel. Acta Biomater. 2023;169:306–316. doi:10.1016/j.actbio.2023.08.010
  • Akalkotkar A, Chablani L, Tawde SA, D’Souza C, D’Souza MJ. Development of a microparticulate prostate cancer vaccine and evaluating the effect of route of administration on its efficacy via the skin. J Microencapsul. 2015;32(3):281–289. doi:10.3109/02652048.2015.1017615
  • Chablani L, Tawde SA, Akalkotkar A, D’Souza C, Selvaraj P, D’Souza MJ. Formulation and evaluation of a particulate oral breast cancer vaccine. J Pharm Sci. 2012;101(10):3661–3671. doi:10.1002/jps.23275
  • Chablani L, Tawde SA, Akalkotkar A, D’Souza MJ. Evaluation of a particulate breast cancer vaccine delivered via skin. Aaps j. 2019;21(2):12. doi:10.1208/s12248-018-0285-7
  • Chablani L, Tawde SA, D’Souza MJ. Spray-dried microparticles: a potential vehicle for oral delivery of vaccines. J Microencapsul. 2012;29(4):388–397. doi:10.3109/02652048.2011.651503
  • Tawde SA, Chablani L, Akalkotkar A, D’Souza MJ. Evaluation of microparticulate ovarian cancer vaccine via transdermal route of delivery. J Control Release. 2016;235:147–154. doi:10.1016/j.jconrel.2016.05.058
  • Joshi VB, Geary SM, Gross BP, Wongrakpanich A, Norian LA, Salem AK. Tumor lysate-loaded biodegradable microparticles as cancer vaccines. Expert Rev Vaccines. 2014;13(1):9–15. doi:10.1586/14760584.2014.851606
  • Forghani P, Waller EK. Poly (I: c) modulates the immunosuppressive activity of myeloid-derived suppressor cells in a murine model of breast cancer. Breast Cancer Res Treat. 2015;153(1):21–30. doi:10.1007/s10549-015-3508-y
  • Wafa EI, Geary SM, Ross KA, Goodman JT, Narasimhan B, Salem AK. Pentaerythritol-based lipid A bolsters the antitumor efficacy of a polyanhydride particle-based cancer vaccine. Nanomedicine. 2019;21:102055. doi:10.1016/j.nano.2019.102055
  • Falke J, Hulsbergen-van de Kaa CA, Maj R, Oosterwijk E, Witjes JA. A placebo-controlled efficacy study of the intravesical immunomodulators TMX-101 and TMX-202 in an orthotopic bladder cancer rat model. World J Urol. 2018;36(11):1719–1725. doi:10.1007/s00345-018-2334-3
  • Ammi R, De Waele J, Willemen Y, et al. Poly(I:C) as cancer vaccine adjuvant: knocking on the door of medical breakthroughs. Pharmacol Ther. 2015;146:120–131. doi:10.1016/j.pharmthera.2014.09.010
  • Saxena M, Sabado RL, La Mar M, et al. Poly-ICLC, a TLR3 agonist, induces transient innate immune responses in patients with treated HIV-infection: a randomized double-blinded placebo controlled trial. Front Immunol. 2019;10:725. doi:10.3389/fimmu.2019.00725
  • El-Hussein A, Lam SSK, Raker J, Chen WR, Hamblin MR. N-dihydrogalactochitosan as a potent immune activator for dendritic cells. J Biomed Mater Res A. 2017;105(4):963–972. doi:10.1002/jbm.a.35991
  • El-Murr T, Patel A, Sedlak C, D’Souza-Lobo B. Evaluating dendritic cells as an in vitro screening tool for immunotherapeutic formulations. J Immunol Methods. 2018;459:55–62. doi:10.1016/j.jim.2018.05.005
  • Verdijk RM, Mutis T, Esendam B, et al. Polyriboinosinic polyribocytidylic acid (poly(I:C)) induces stable maturation of functionally active human dendritic cells. J Immunol. 1999;163(1):57–61. doi:10.4049/jimmunol.163.1.57
  • Smits EL, Ponsaerts P, Van de Velde AL, et al. Proinflammatory response of human leukemic cells to dsRNA transfection linked to activation of dendritic cells. Leukemia. 2007;21(8):1691–1699. doi:10.1038/sj.leu.2404763
  • Benwell RK, Hruska JE, Fritsche KL, Lee DR. Double stranded RNA- relative to other TLR ligand-activated dendritic cells induce extremely polarized human Th1 responses. Cell Immunol. 2010;264(2):119–126. doi:10.1016/j.cellimm.2010.05.008
  • Salem ML, Diaz-Montero CM, El-Naggar SA, Chen Y, Moussa O, Cole DJ. The TLR3 agonist poly(I:C) targets CD8+ T cells and augments their antigen-specific responses upon their adoptive transfer into naïve recipient mice. Vaccine. 2009;27(4):549–557. doi:10.1016/j.vaccine.2008.11.013
  • Driessens G, Kline J, Gajewski TF. Costimulatory and coinhibitory receptors in anti-tumor immunity. Immunol Rev. 2009;229(1):126–144. doi:10.1111/j.1600-065X.2009.00771.x
  • Zheng Y, Manzotti CN, Liu M, Burke F, Mead KI, Sansom DM. CD86 and CD80 differentially modulate the suppressive function of human regulatory T cells. J Immunol. 2004;172(5):2778–2784. doi:10.4049/jimmunol.172.5.2778
  • den Haan JM, Arens R, van Zelm MC. The activation of the adaptive immune system: cross-talk between antigen-presenting cells, T cells and B cells. Immunol Lett. 2014;162(2):Pt B):103–112. doi:10.1016/j.imlet.2014.10.011
  • Rojas-Sepúlveda D, Tittarelli A, Gleisner MA, et al. Tumor lysate-based vaccines: on the road to immunotherapy for gallbladder cancer. Cancer Immunol Immunother. 2018;67(12):1897–1910. doi:10.1007/s00262-018-2157-5