103
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

ZNF217 Gene Copy Number as a Marker of Response to Standard Therapy Drugs According to ERα Status in Breast Cancer

ORCID Icon, , & ORCID Icon
Pages 127-139 | Received 06 Nov 2023, Accepted 24 Jan 2024, Published online: 15 Mar 2024

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.21660
  • Harbeck N, Penault-Llorca F, Cortes J, et al. Breast cancer. Nat Rev Dis Primers. 2019;5(1):66. doi:10.1038/s41572-019-0111-2
  • Haibe-Kains B, Desmedt C, Loi S, et al. A three-gene model to robustly identify breast cancer molecular subtypes. JNCI J National Cancer Inst. 2012;104(4):311–325. doi:10.1093/jnci/djr545
  • Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN. Overview of Resistance to Systemic Therapy in Patients with Breast Cancer. Madame curie bioscience database. Available from: https://www.ncbi.nlm.nih.gov/books/NBK6306/. Accessed October 17, 2023.
  • Szostakowska M, Trębińska-Stryjewska A, Grzybowska EA, Fabisiewicz A. Resistance to endocrine therapy in breast cancer: molecular mechanisms and future goals. Breast Cancer Res Treat. 2019;173(3):489–497. doi:10.1007/s10549-018-5023-4
  • Nass N, Kalinski T. Tamoxifen resistance: from cell culture experiments towards novel biomarkers. Pathol Res Pract. 2015;211(3):189–197. doi:10.1016/j.prp.2015.01.004
  • Ginestier C, Cervera N, Finetti P, et al. Prognosis and gene expression profiling of 20q13-amplified breast cancers. Clin Cancer Res. 2006;12(15):4533–4544. doi:10.1158/1078-0432.CCR-05-2339
  • Carracedo A, Salido M, Corominas JM, et al. Are ER+PR+ and ER+PR− breast tumors genetically different? A CGH array study. Cancer Genet. 2012;205(4):138–146. doi:10.1016/j.cancergen.2012.01.001
  • Letessier A, Sircoulomb F, Ginestier C, et al. Frequency, prognostic impact, and subtype association of 8p12, 8q24, 11q13, 12p13, 17q12, and 20q13 amplifications in breast cancers. BMC Cancer. 2006;6(1):245. doi:10.1186/1471-2407-6-245
  • Quinlan K, Verger A, Yaswen P, Crossley M. Amplification of zinc finger gene 217 (ZNF217) and cancer: when good fingers go bad. Biochim Biophys Acta Rev Cancer. 2007;1775(2):333–340. doi:10.1016/j.bbcan.2007.05.001
  • Shimada M, Imura J, Kozaki T, et al. Detection of Her2/neu, c-MYC and ZNF217 gene amplification during breast cancer progression using fluorescence in situ hybridization. Oncol Rep. 2005;13(4):633–641.
  • Shi H, Bevier M, Johansson R, et al. Single nucleotide polymorphisms in the 20q13 amplicon genes in relation to breast cancer risk and clinical outcome. Breast Cancer Res Treat. 2011;130(3):905–916. doi:10.1007/s10549-011-1600-5
  • Vendrell JA, Solassol J, Győrffy B, et al. Evaluating ZNF217 mRNA expression levels as a predictor of response to endocrine therapy in er+ breast cancer. Front Pharmacol. 2019;10:9. doi:10.3389/fphar.2018.01581
  • Vendrell JA, Thollet A, Nguyen NT, et al. ZNF217 Is a marker of poor prognosis in breast cancer that drives epithelial–mesenchymal transition and invasion. Cancer Res. 2012;72(14):3593–3606. doi:10.1158/0008-5472.CAN-11-3095
  • Ginzinger DG, Godfrey TE, Nigro J, et al. Measurement of DNA copy number at microsatellite loci using quantitative PCR analysis. Cancer Res. 2000;60(19):5405–5409.
  • Collins C, Volik S, Kowbel D. Comprehensive genome sequence analysis of a breast cancer amplicon. Genome Res. 2001;11(6):1034–1042. doi:10.1101/gr.GR1743R
  • Banck MS, Li S, Nishio H, Wang C, Beutler AS, Walsh MJ. The ZNF217 oncogene is a candidate organizer of repressive histone modifiers. Epigenetics. 2009;4(2):100–106. doi:10.4161/epi.4.2.7953
  • Cowger JJM, Zhao Q, Isovic M, Torchia J. Biochemical characterization of the zinc-finger protein 217 transcriptional repressor complex: identification of a ZNF217 consensus recognition sequence. Oncogene. 2007;26(23):3378–3386. doi:10.1038/sj.onc.1210126
  • Quinlan KGR, Nardini M, Verger A, et al. Specific recognition of znf217 and other zinc finger proteins at a surface groove of c-terminal binding proteins. Mol Cell Biol. 2006;26(21):8159–8172. doi:10.1128/MCB.00680-06
  • Huang G, Krig S, Kowbel D, et al. ZNF217 suppresses cell death associated with chemotherapy and telomere dysfunction. Hum Mol Genet. 2005;14(21):3219–3225. doi:10.1093/hmg/ddi352
  • Thollet A, Vendrell JA, Payen L, et al. ZNF217 confers resistance to the pro-apoptotic signals of paclitaxel and aberrant expression of Aurora-A in breast cancer cells. Mol Cancer. 2010;9(1):291. doi:10.1186/1476-4598-9-291
  • Collins C, Rommens JM, Kowbel D, et al. Positional cloning of ZNF 217 and NABC 1: genes amplified at 20q13.2 and overexpressed in breast carcinoma. Proc Natl Acad Sci. 1998;95(15):8703–8708. doi:10.1073/pnas.95.15.8703
  • Huang HN, Huang WC, Lin CH, Chiang YC, Huang HY, Kuo KT. Chromosome 20q13.2 ZNF217 locus amplification correlates with decreased E-cadherin expression in ovarian clear cell carcinoma with PI3K-Akt pathway alterations. Hum Pathol. 2014;45(11):2318–2325. doi:10.1016/j.humpath.2014.07.020
  • Ginestier C, Adélaïde J, Gonçalvès A, et al. ERBB2 phosphorylation and trastuzumab sensitivity of breast cancer cell lines. Oncogene. 2007;26(50):7163–7169. doi:10.1038/sj.onc.1210528
  • Hartmann K, Becker-Putsche M, Bocklitz T, et al. A study of docetaxel-induced effects in MCF-7 cells by means of raman microspectroscopy. Anal Bioanal Chem. 2012;403(3):745–753. doi:10.1007/s00216-012-5887-9
  • Sapino A, Pietribiasi F, Bussolati G, Marchisio PC. Estrogen- and tamoxifen-induced rearrangement of cytoskeletal and adhesion structures in breast cancer MCF-7 cells. Cancer Res. 1986;46(5):2526–2531.
  • Wang S, Konorev EA, Kotamraju S, Joseph J, Kalivendi S, Kalyanaraman B. Doxorubicin induces apoptosis in normal and tumor cells via distinctly different mechanisms. J Biol Chem. 2004;279(24):25535–25543. doi:10.1074/jbc.M400944200
  • Rennstam K, Baldetorp B, Kytölä S, Tanner M, Isola J. Chromosomal rearrangements and oncogene amplification precede aneuploidization in the genetic evolution of breast cancer. Cancer Res. 2001;61(3):1214–1219.
  • Schipf A, Mayr D, Kirchner T, Diebold J. Molecular genetic aberrations of ovarian and uterine carcinosarcomas—a CGH and FISH study. Virchows Archiv. 2008;452(3):259–268. doi:10.1007/s00428-007-0557-6
  • Wolff AC, Hammond MEH, Allison KH, et al. Human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical oncology/college of American pathologists clinical practice guideline focused update. Arch Pathol Lab Med. 2018;142(11):1364–1382. doi:10.5858/arpa.2018-0902-SA
  • Albertson DG. Gene amplification in cancer. Trends Genet. 2006;22(8):447–455. doi:10.1016/j.tig.2006.06.007
  • Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–404. doi:10.1158/2159-8290.CD-12-0095
  • Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269). doi:10.1126/scisignal.2004088
  • Curtis C, Shah SP, Chin SF, et al. The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature. 2012;486(7403):346–352. doi:10.1038/nature10983
  • Pereira B, Chin SF, Rueda OM, et al. The somatic mutation profiles of 2433 breast cancers refine their genomic and transcriptomic landscapes. Nat Commun. 2016;7(1):11479. doi:10.1038/ncomms11479
  • Li LT, Jiang G, Chen Q, Zheng JN. Ki67 is a promising molecular target in the diagnosis of cancer (Review). Mol Med Rep. 2015;11(3):1566–1572. doi:10.3892/mmr.2014.2914
  • Zheng A, Kallio A, Härkönen P. Tamoxifen-induced rapid death of mcf-7 breast cancer cells is mediated via extracellularly signal-regulated kinase signaling and can be abrogated by estrogen. Endocrinology. 2007;148(6):2764–2777. doi:10.1210/en.2006-1269
  • Baslan T, Kendall J, Volyanskyy K, et al. Novel insights into breast cancer copy number genetic heterogeneity revealed by single-cell genome sequencing. Elife. 2020;9. doi:10.7554/eLife.51480
  • Krig SR, Miller JK, Frietze S, et al. ZNF217, a candidate breast cancer oncogene amplified at 20q13, regulates expression of the erbB3 receptor tyrosine kinase in breast cancer cells. Oncogene. 2010;29(40):5500–5510. doi:10.1038/onc.2010.289
  • Vargas-Rondón N, Pérez-Mora E, Villegas VE, Rondón-Lagos M. Role of chromosomal instability and clonal heterogeneity in the therapy response of breast cancer cell lines. Cancer Biol Med. 2020;17(4):970–985. doi:10.20892/j.issn.2095-3941.2020.0028
  • Endesfelder D, Burrell RA, Kanu N, et al. chromosomal instability selects gene copy-number variants encoding core regulators of proliferation in er+ breast cancer. Cancer Res. 2014;74(17):4853–4863. doi:10.1158/0008-5472.CAN-13-2664
  • Birkbak NJ, Eklund AC, Li Q, et al. Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer Res. 2011;71(10):3447–3452. doi:10.1158/0008-5472.CAN-10-3667
  • Jamal-Hanjani M, A’Hern R, Birkbak NJ, et al. Extreme chromosomal instability forecasts improved outcome in ER-negative breast cancer: a prospective validation cohort study from the TACT trial. Ann Oncol. 2015;26(7):1340–1346. doi:10.1093/annonc/mdv178
  • Nguyen NT, Vendrell JA, Poulard C, et al. A functional interplay between ZNF217 and estrogen receptor alpha exists in luminal breast cancers. Mol Oncol. 2014;8(8):1441–1457. doi:10.1016/j.molonc.2014.05.013
  • Cohen PA, Donini CF, Nguyen NT, Lincet H, Vendrell JA. The dark side of ZNF217, a key regulator of tumorigenesis with powerful biomarker value. Oncotarget. 2015;6(39):41566–41581. doi:10.18632/oncotarget.5893
  • Fahmé P, Ramadan F, Le DT, et al. The intricate interplay between the ZNF217 oncogene and epigenetic processes shapes tumor Progression. Cancers. 2022;14(24):6043. doi:10.3390/cancers14246043
  • Ferrari P, Scatena C, Ghilli M, Bargagna I, Lorenzini G, Nicolini A. Molecular mechanisms, biomarkers and emerging therapies for chemotherapy resistant TNBC. Int J Mol Sci. 2022;23(3):1665. doi:10.3390/ijms23031665
  • Liedtke C, Mazouni C, Hess KR, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;26(8):1275–1281. doi:10.1200/JCO.2007.14.4147
  • Ippolito MR, Martis V, Martin S, et al. Gene copy-number changes and chromosomal instability induced by aneuploidy confer resistance to chemotherapy. Dev Cell. 2021;56(17):2440–2454.e6. doi:10.1016/j.devcel.2021.07.006
  • Roylance R, Endesfelder D, Gorman P, et al. Relationship of extreme chromosomal instability with long-term survival in a retrospective analysis of primary breast cancer. Cancer Epidemiol Biomarkers Prev. 2011;20(10):2183–2194. doi:10.1158/1055-9965.EPI-11-0343
  • Littlepage LE, Adler AS, Kouros-Mehr H, et al. The transcription factor znf217 is a prognostic biomarker and therapeutic target during breast cancer progression. Cancer Discov. 2012;2(7):638–651. doi:10.1158/2159-8290.CD-12-0093
  • Nedeljković M, Damjanović A. Mechanisms of chemotherapy resistance in triple-negative breast cancer—how we can rise to the challenge. Cells. 2019;8(9):957. doi:10.3390/cells8090957
  • Inanc M, Ozkan M, Karaca H, et al. Cytokeratin 5/6, c-met expressions, and PTEN loss prognostic indicators in triple-negative breast cancer. Med Oncol. 2014;31(1):801. doi:10.1007/s12032-013-0801-7
  • Early Breast Cancer Trialists’ Collaborative Group. Tamoxifen for early randomised trials. Lancet. 1998;351(9114):1451–1467. doi:10.1016/S0140-6736(97)11423-4
  • Gruvberger-Saal SK, Bendahl PO, Saal LH, et al. Estrogen receptor β expression is associated with tamoxifen response in erα-Negative breast carcinoma. Clin Cancer Res. 2007;13(7):1987–1994. doi:10.1158/1078-0432.CCR-06-1823
  • Wang S, Huang X, Lee CK, Liu B. Elevated expression of erbB3 confers paclitaxel resistance in erbB2-overexpressing breast cancer cells via upregulation of survivin. Oncogene. 2010;29(29):4225–4236. doi:10.1038/onc.2010.180