24
Views
0
CrossRef citations to date
0
Altmetric
Review

Effects of medicinal plant extracts on gluconeogenesis

Pages 1-6 | Published online: 18 Jun 2012

References

  • World Health Organization [homepage on the Internet]. Geneva: World Health Organization; [updated 2012; cited Dec 2011]. Available from: http://www.who.org. Accessed Dec 2011.
  • American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2011;34(Suppl 1):S62–S69.
  • DeFronzo R, Mandarino L. Pathogenesis of type 2 diabetes mellitus. [article on the Internet]. 2009 [cited Dec 2011]. http://www.endotext. org. 2009. Accessed Dec 2011.
  • Hundal R, Krssak M, Dufour S, et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes. 2000;49(12):2063–2069.
  • Guyton A, Hall J. Textbook of Medical Physiology. 11th ed. Philadelphia: Elsevier; 2006:836–839.
  • Tahrani AA, Bailey CJ, Del Prato S, Barnett AH. Management of type 2 diabetes: new and future developments in treatment. Lancet. 2011;378(9786):182–197.
  • Agius L. New hepatic targets for glycaemic control in diabetes. Best Pract Res Clin Endocrinol Metab. 2007;21(4):587–605.
  • He L, Sabet A, Djedjos S, Miller et al. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell. 2009;137(4):635–645.
  • Kim YD, Park KG, Lee YS, et al. Metformin inhibits hepatic gluconeo- genesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP. Diabetes. 2008;57(2):306–314.
  • Lee JM, Seo WY, Song KH, et al. AMPK-dependent repression of hepatic gluconeogenesis via disruption of CREB.CRTC2 complex by orphan nuclear receptor small heterodimer partner. J Biol Chem. 2010;285(42):32182–32191.
  • Kirpichnikov D, McFarlane S, Sowers J. Metformin: an update. Ann Intern Med. 2002;137(1):25–33.
  • Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108(8):1167–1174.
  • Witters L. The blooming of the French lilac. J Clin Invest. 2001;108(8):1105–1107.
  • Prabhakar P, Doble M. A target based therapeutic approach towards diabetes mellitus using medicinal plants. Curr Diabetes Rev. 2008;4(4):291–308.
  • Yuan HD, Piao GC. An active part of Artemisia sacrorum Ledeb. suppresses gluconeogenesis through AMPK mediated GSK3p and CREB phosphorylation in human HepG2 cells. Biosci Biotechnol Biochem. 2011;75(6):1079–1984.
  • Andrade-Cetto A, Vázquez RC. Gluconeogenesis inhibition and phytochemical composition of two Cecropia species. J Ethnopharmacol. 2010;130(1):92–97.
  • Andrade-Cetto A. Inhibition of Gluconeogenesis by Malmeadepressa root. J Ethnopharmacol. 2011;137(1):930–933.
  • Chung MJ, Cho SY, Bhuiyan MJ, Kim KH, Lee SJ. Anti-diabetic effects of lemon balm (Melissa officinalis) essential oil on glucose- and lipid- regulating enzymes in type 2 diabetic mice. Br JNutr. 2010;104(2):180–188.
  • Ima R, Mano H, Matsuura T, Nakatani S, Shimizu J, Wada M. Mechanisms of blood glucose-lowering effect of aqueous extract from stems of Kothala himbutu (Salacia reticulata) in the mouse. J Ethnopharmacol 2009;121(12):234–240.
  • Shahsavari R, Ehsani-Zonouz A, Houshmand M, Salehnia A, Ahangari G, Firoozra M. Plasma glucose lowering effect of the wild Satureja khuzestanica Jamzad essential oil in diabetic rats: role of decreased gluconeogenesis. Pak J Biol Sci. 2009;12(2):140–145.
  • Sangeetha MK, Blaji Raghavendran HR, Gayathri V, Vasanthi HR. Tinospora cordifolia attenuates oxidative stress and distorted carbohydrate metabolism in experimentally induced type 2 diabetes in rats. J Nat Med. 2011;65(3–4):544–550.
  • Patel M, Mishra S. Hypoglycemic activity of alkaloidal fraction of Tinosporacordifolia. Phytomedicine. 2011;18(12):1045–1052.