186
Views
6
CrossRef citations to date
0
Altmetric
Review

Galanin Receptors as Drug Target for Novel Antidepressants: Review

ORCID Icon, ORCID Icon, , , ORCID Icon, & show all
Pages 37-45 | Published online: 21 Apr 2020

References

  • Melander T, Hökfelt T, Rökaeus A. Distribution of galaninlike immunoreactivity in the rat central nervous system. J Comp Neurol. 1986;248(4):475–517. doi:10.1002/cne.v248:42424949
  • Fuxe K, Agnati LF, Von Euler G, et al. Galanin/5-HT receptor interactions. A new integrative mechanism in the control of 5-HT neurotransmission in the central nervous system In: Paoletti R,Vonhoutte PM,Brunello N, Maggi FM, editors. Serotonin. Dordrecht: Springer; 1990:169–185.
  • Xu IS, Grass S, Xu XJ, Wiesenfeld-Hallin Z. On the role of galanin in mediating spinal flexor reflex excitability in inflammation. Neurosci. 1998;85(3):827–835. doi:10.1016/S0306-4522(97)00676-3
  • Lu X, Barr AM, Kinney JW, et al. A role for galanin in antidepressant actions with a focus on the dorsal raphe nucleus. Proc Natl Acad Sci. 2005;102(3):874–879. doi:10.1073/pnas.040889110215647369
  • Kask K, Langel Ü, Bartfai T. Galanin—a neuropeptide with inhibitory actions. Cell Mol Neurobiol. 1995;15(6):653–673. doi:10.1007/BF020711308719035
  • Lundkvist J, Land T, Kahl U, Bedecs K, Bartfai T. cDNA sequence, ligand binding, and regulation of galanin/GMAP in mouse brain. Neurosci Lett. 1995;200(2):121–124. doi:10.1016/0304-3940(95)12094-K8614559
  • Kakuyama H, Kuwahara A, Mochizuki T, Hoshino M, Yanaihara N. Role of N-terminal active sites of galanin in neurally evoked circular muscle contractions in the guinea-pig ileum. Eur J Pharmacol. 1997;329(1):85–91. doi:10.1016/S0014-2999(97)10109-19218688
  • Smith KE, Walker MW, Artymyshyn R, et al. Cloned human and rat galanin GALR3 receptors pharmacology and activation of G-protein inwardly rectifying K+ channels. J Biol Chem. 1998;273(36):23321–23326. doi:10.1074/jbc.273.36.233219722565
  • Lang R, Gundlach AL, Kofler B. The galanin peptide family: receptor pharmacology, pleiotropic biological actions, and implications in health and disease. Pharmacol Ther. 2007;115(2):177–207. doi:10.1016/j.pharmthera.2007.05.00917604107
  • Ögren SO, Kuteeva E, Elvander-Tottie E, Hökfelt T. Neuropeptides in learning and memory processes with focus on galanin. Eur J Pharmacol. 2010;626(1):9–17. doi:10.1016/j.ejphar.2009.09.07019837050
  • Picciotto MR, Brabant C, Einstein EB, Kamens HM, Neugebauer NM. Effects of galanin on monoaminergic systems and HPA axis: potential mechanisms underlying the effects of galanin on addiction-and stress-related behaviors. Brain Res. 2010;1314:206–218.19699187
  • Smith KE, Forray C, Walker MW, et al. Expression cloning of a rat hypothalamic galanin receptor coupled to phosphoinositide turnover. J Biol Chem. 1997;272(39):24612–24616. doi:10.1074/jbc.272.39.246129305929
  • Smith KE, Walker MW, Artymyshyn R, et al. Cloned human and rat galanin GALR3 receptors Pharmacology and activation of G-protein inwardly rectifying K+ channels. Journal of Biological Chemistry. 1998;273(36):23321-23326.9722565
  • Iismaa TP, Shine J. Galanin and galanin receptors In:Richter D, editor. Regulatory Peptides and Cognate Receptors. Berlin, Heidelberg: Springer; 1999;26:257–291.
  • Habert-Ortoli E, Amiranoff B, Loquet I, Laburthe M, Mayaux JF. Molecular cloning of a functional human galanin receptor. Proc Natl Acad Sci. 1994;91(21):9780–9783. doi:10.1073/pnas.91.21.97807524088
  • Juhasz G, Hullam G, Eszlari N, et al. Brain galanin system genes interact with life stresses in depression-related phenotypes. Proc Natl Acad Sci. 2014;111(16):E1666–73. doi:10.1073/pnas.140364911124706871
  • Saar I, Lahe J, Langel K, et al. Novel systemically active galanin receptor 2 ligands in depression‐like behavior. J Neurochem. 2013;127(1):114–123. doi:10.1111/jnc.1227423600864
  • Crawley JN, Wenk GL. Co-existence of galanin and acetylcholine: is galanin involved in memory processes and dementia? Trends Neurosci. 1989;12(8):278–282. doi:10.1016/0166-2236(89)90003-92475942
  • Dunne MJ, Bullett MJ, Li GD, Wollheim CB, Petersen OH. Galanin activates nucleotide‐dependent K+ channels in insulin‐secreting cells via a pertussis toxin‐sensitive G‐protein. EMBO J. 1989;8(2):413–420. doi:10.1002/embj.1989.8.issue-22470586
  • Fridolf T, Ahrén B. Dual action of the neuropeptide galanin on the cytoplasmic free calcium concentration in RIN m5F cells. Biochem Biophys Res Commun. 1993;191(3):1224–1229. doi:10.1006/bbrc.1993.13487682064
  • Jurkowski W, Yazdi S, Elofsson A. Ligand binding properties of human galanin receptors. Mol Membr Biol. 2013;30(2):206–216. doi:10.3109/09687688.2012.75038423237663
  • Guipponi M, Chentouf A, Webling KE, et al. Galanin pathogenic mutations in temporal lobe epilepsy. Hum Mol Genet. 2015;24(11):3082–3091.25691535
  • Wang P, Li H, Barde S, et al. Depression-like behavior in rat: involvement of galanin receptor subtype 1 in the ventral periaqueductal gray. Proc Natl Acad Sci. 2016;113(32):E4726–35. doi:10.1073/pnas.160919811327457954
  • Probst WC, Snyder LA, Schuster DI, Brosius J, Sealfon SC. Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol. 1992;11(1):1–20. doi:10.1089/dna.1992.11.11310857
  • Krishna AG, Menon ST, Terry TJ, Sakmar TP. Evidence that helix 8 of rhodopsin acts as a membrane-dependent conformational switch. Biochemistry. 2002;41(26):8298–8309. doi:10.1021/bi025534m12081478
  • Burbach JP. Neuropeptides from concept to online database www.neuropeptides.nl. Eur J Pharmacol. 2010;626(1):27–48. doi:10.1016/j.ejphar.2009.10.01519837055
  • Wang S, He C, Maguire MT, et al. Genomic organization and functional characterization of the mouse GalR1 galanin receptor. FEBS Lett. 1997;411(2–3):225–230. doi:10.1016/S0014-5793(97)00695-99271210
  • Pang L, Hashemi T, Lee HJ, et al. The mouse GalR2 galanin receptor: genomic organization, cDNA cloning, and functional characterization. J Neurochem. 1998;71(6):2252–2259. doi:10.1046/j.1471-4159.1998.71062252.x9832122
  • Pan J, Singh US, Takahashi T, et al. PKC mediates cyclic stretch‐induced cardiac hypertrophy through Rho family GTPases and mitogen‐activated protein kinases in cardiomyocytes. J Cell Physiol. 2005;202(2):536–553. doi:10.1002/jcp.2015115316932
  • Mons N, Decorte L, Jaffard R, Cooper DM. Ca2+-sensitive adenylyl cyclases, key integrators of cellular signalling. Life Sci. 1998;62(17–18):1647–1652. doi:10.1016/S0024-3205(98)00122-29585151
  • Wang S, Hashemi T, Fried S, Clemmons AL, Hawes BE. Differential intracellular signaling of the GalR1 and GalR2 galanin receptor subtypes. Biochemistry. 1998;37(19):6711–6717. doi:10.1021/bi97284059578554
  • Kolakowski LF Jr, O’Neill GP, Howard AD, et al. Molecular characterization and expression of cloned human galanin receptors GALR2 and GALR3. J Neurochem. 2002;71(6):2239–2251. doi:10.1046/j.1471-4159.1998.71062239.x
  • Charney DS, Manji HK. Life stress, genes, and depression: multiple pathways lead to increased risk and new opportunities for intervention. Sci Stke. 2004;2004(225):re5.15039492
  • Rang HP, Ritter JM, Flower RJ, Henderson G. Rang and Dale’s Pharmacology. 8th ed. Churchill Livingstone; 2015.
  • Kendler KS. The dappled nature of causes of psychiatric illness: replacing the organic–functional/hardware–software dichotomy with empirically based pluralism. Mol Psychiatry. 2012;17(4):377–388. doi:10.1038/mp.2011.18222230881
  • Liu M, Simon MI. Regulation by cAMP-dependent protein kinease of a G-protein-mediated phospholipase C. Nature. 1996;382(6586):83–87. doi:10.1038/382083a08657310
  • Tatemoto K, Rökaeus Å, Jörnvall H, McDonald TJ, Mutt V. Galanin—a novel biologically active peptide from porcine intestine. FEBS Lett. 1983;164(1):124–128. doi:10.1016/0014-5793(83)80033-76197320
  • Katzung BG. Basic and Clinical Pharmacology. Mc Graw Hill; 2012.
  • Morilak DA, Frazer A. Antidepressants and brain monoaminergic systems: a dimensional approach to understanding their behavioural effects in depression and anxiety disorders. Int J Neuropsychopharmacol. 2004;7(2):193–218. doi:10.1017/S146114570400408015003145
  • Millan MJ. Multi-target strategies for the improved treatment of depressive states: conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther. 2006;110(2):135–370. doi:10.1016/j.pharmthera.2005.11.00616522330
  • Maes M, Fišar Z, Medina M, Scapagnini G, Nowak G, Berk M. New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates—Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology. 2012;20(3):127–150.22271002
  • Trivedi MH, Rush AJ, Wisniewski SR, et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR* D: implications for clinical practice. Am J Psychiatry. 2006;163(1):28–40. doi:10.1176/appi.ajp.163.1.2816390886
  • Diaz-Cabiale Z, Parrado C, Fuxe K, Agnati L, Narvaez JA. Receptor–receptor interactions in central cardiovascular regulation. Focus on neuropeptide/α 2-adrenoreceptor interactions in the nucleus tractus solitarius. J Neural Transm. 2007;114(1):115–125. doi:10.1007/s00702-006-0559-616988794
  • Díaz-Cabiale Z, Parrado C, Narváez M, et al. Neurochemical modulation of central cardiovascular control: the integrative role of galanin In: Hokfelt T, editor. Galanin. Basel: Springer; 2010;102:113–131.
  • Díaz-Cabiale Z, Parrado C, Narváez M, et al. Galanin receptor/neuropeptide Y receptor interactions in the dorsal raphe nucleus of the rat. Neuropharmacol. 2011;61(1–2):80–86. doi:10.1016/j.neuropharm.2011.03.002
  • Millón C, Flores-Burgess A, Narváez M, et al. A role for galanin N-terminal fragment (1–15) in anxiety-and depression-related behaviors in rats. Int J Neuropsychopharmacol. 2015;18(3):pyu064. doi:10.1093/ijnp/pyu064
  • Weiss JM, Bonsall RW, Demetrikopoulos MK, Emery MS, West CH. Galanin: a significant role in depression? Ann N Y Acad Sci. 1998;863(1):364–382. doi:10.1111/j.1749-6632.1998.tb10707.x9928183
  • Millón C, Flores-Burgess A, Narváez M, et al. (1–15) enhances the antidepressant effects of the 5-HT1A receptor agonist 8-OH-DPAT: involvement of the raphe-hippocampal 5-HT neuron system. Brain Struct Funct. 2016;221(9):4491–4504. doi:10.1007/s00429-015-1180-y26792005
  • Jackowski A, Crockard A, Burnstock G, Lincoln J. Alterations in serotonin and neuropeptide Y content of cerebrovascular sympathetic nerves following experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab. 1989;9(3):271–279. doi:10.1038/jcbfm.1989.452497110
  • Terenina NB, Kreshchenko ND, Mochalova NB, Movsesyan SO. Serotonin and neuropeptide FMRFamide in the attachment organs of trematodes. Helminthologia. 2018;55(3):185–194. doi:10.2478/helm-2018-002231662646
  • Bai YF, Ma HT, Liu LN, et al. Activation of galanin receptor 1 inhibits locus coeruleus neurons via GIRK channels. Biochem Biophys Res Commun. 2018;503(1):79–85. doi:10.1016/j.bbrc.2018.05.18129852172
  • Morais JS, Souza MM, Campanha TM, et al. Galanin subtype 1 and subtype 2 receptors mediate opposite anxiety-like effects in the rat dorsal raphe nucleus. Behav Brain Res. 2016;314:125–133. doi:10.1016/j.bbr.2016.08.00727498247
  • Razani H, Diaz-Cabiale Z, Fuxe K, Ögren SO. Intraventricular galanin produces a time-dependent modulation of 5-HT1A receptors in the dorsal raphe of the rat. Neuroreport. 2000;11(18):3943–3948. doi:10.1097/00001756-200012180-0000811192606
  • Lang R, Gundlach AL, Holmes FE, et al. Physiology, signaling, and pharmacology of galanin peptides and receptors: three decades of emerging diversity. Pharmacol Rev. 2015;67(1):118–175.25428932
  • Fuxe K, Ögren SO, Jansson A, Cintra A, Härfstrand A, Agnati LF. Intraventricular injections of galanin reduces 5‐HT metabolism in the ventral limbic cortex, the hippocampal formation and the fronto‐parietal cortex of the male rat. Acta Physiol Scand. 1988;133(4):579–581. doi:10.1111/j.1748-1716.1988.tb08444.x2465672
  • Hedlund PB, Galanin FK. 5‐HT1A Receptor interactions as an integrative mechanism in 5‐HT neurotransmission in the brain a. Ann N Y Acad Sci. 1996;780(1):193–212. doi:10.1111/j.1749-6632.1996.tb15124.x8602734
  • Kehr J, Yoshitake T, Wang FH, et al. Galanin is a potent in vivo modulator of mesencephalic serotonergic neurotransmission. Neuropsychopharmacol. 2002;27(3):341–356. doi:10.1016/S0893-133X(02)00309-3
  • Misane I, Razani H, Jansson FH, Fuxe K, Ögren SO. Intraventricular galanin modulates a 5‐HT1A receptor‐mediated behavioural response in the rat. Eur J Neurosci. 1998;10(4):1230–1240. doi:10.1046/j.1460-9568.1998.00132.x9749777
  • Razani H, Díaz-Cabiale Z, Misane I, Wang FH, Fuxe K, Ögren SO. Prolonged effects of intraventricular galanin on a 5-hydroxytryptamine1A receptor mediated function in the rat. Neurosci Lett. 2001;299(1–2):145–149. doi:10.1016/S0304-3940(00)01788-211166958
  • Parker EM, Izzarelli DG, Nowak HP, et al. Cloning and characterization of the rat GALR1 galanin receptor from Rin14B insulinoma cells. Mol Brain Res. 1995;34(2):179–189. doi:10.1016/0169-328X(95)00159-P8750821
  • Bartfai T, Lu X, Badie-Mahdavi H, et al. Galmic, a nonpeptide galanin receptor agonist, affects behaviors in seizure, pain, and forced-swim tests. Proc Natl Acad Sci. 2004;101(28):10470–10475. doi:10.1073/pnas.040380210115240875
  • Kuteeva E, Hökfelt T, Wardi T, Ogren SO. Galanin, galanin receptor subtypes and depression-like behaviour. Cell Mol Life Sci CMLS. 2008;65(12):1854–1863. doi:10.1007/s00018-008-8160-918500640
  • Hedlund P, Von Euler G, Fuxe K. Activation of 5-hydroxytryptamine1A receptors increases the affinity of galanin receptors in di-and telencephalic areas of the rat. Brain Res. 1991;560(1–2):251–259. doi:10.1016/0006-8993(91)91240-21836971
  • Borroto-Escuela DO, Narvaez M, Marcellino D, et al. Galanin receptor-1 modulates 5-hydroxtryptamine-1A signaling via heterodimerization. Biochem Biophys Res Commun. 2010;393(4):767–772. doi:10.1016/j.bbrc.2010.02.07820171159
  • Mennicken F, Hoffert C, Pelletier M, Ahmad S, O’Donnell D. Restricted distribution of galanin receptor 3 (GalR3) mRNA in the adult rat central nervous system. J Chem Neuroanat. 2002;24(4):257–268. doi:10.1016/S0891-0618(02)00068-612406501
  • Yoshitake S, Kuteeva E, Hökfelt T, et al. Correlation between the effects of local and intracerebroventricular infusions of galanin on 5‐HT release studied by microdialysis, and distribution of galanin and galanin receptors in prefrontal cortex, ventral hippocampus, amygdala, hypothalamus, and striatum of awake rats. Synapse. 2014;68(5):179–193. doi:10.1002/syn.2173024430888
  • HöKFELT TO, ZQ XU, SHI TJ, Holmberg K, Zhang X. Galanin in ascending systems: focus on coexistence with 5‐hydroxytryptamine and noradrenaline a. Ann N Y Acad Sci. 1998;863(1):252–263. doi:10.1111/j.1749-6632.1998.tb10700.x9928176
  • Seutin V, Verbanck P, Massotte L, Dresse A. Galanin decreases the activity of locus coeruleus neurons in vitro. Eur J Pharmacol. 1989;164(2):373–376. doi:10.1016/0014-2999(89)90481-02474450
  • Hökfelt T, Broberger C, Diez M, et al. NPY, two peptides with multiple putative roles in the nervous system. Horm Metab Res. 1999;31(5):330–334. doi:10.1055/s-2007-97874810422730
  • Ma X, Tong YG, Schmidt R, et al. Effects of galanin receptor agonists on locus coeruleus neurons. Brain Res. 2001;919(1):169–174. doi:10.1016/S0006-8993(01)03033-511689176
  • Pieribone VA, Xu ZQ, Zhang X, Grillner S, Bartfai T, Hökfelt T. Galanin induces a hyperpolarization of norepinephrine-containing locus coeruleus neurons in the brainstem slice. Neurosci. 1995;64(4):861–874. doi:10.1016/0306-4522(94)00450-J
  • Millón C, Flores-Burgess A, Narváez M, et al. The neuropeptides galanin and galanin (1–15) in depression-like behaviours. Neuropeptides. 2017;64:39–45. doi:10.1016/j.npep.2017.01.00428196617
  • Borroto-Escuela DO, Narvaez M, Di Palma M, et al. Preferential activation by galanin 1–15 fragment of the GalR1 protomer of a GalR1–GalR2 heteroreceptor complex. Biochem Biophys Res Commun. 2014;452(3):347–353. doi:10.1016/j.bbrc.2014.08.06125152404
  • Díaz‐Cabiale Z, Parrado C, Rivera A, et al. (NPY) interactions in central cardiovascular control: involvement of the NPY Y1 receptor subtype. Eur J Neurosci. 2006;24(2):499–508. doi:10.1111/j.1460-9568.2006.04937.x16903855
  • Fuxe K, Marcellino D, Rivera A, et al. Receptor–receptor interactions within receptor mosaics. Impact on neuropsychopharmacology. Brain Res Rev. 2008;58(2):415–452. doi:10.1016/j.brainresrev.2007.11.00718222544
  • Branchek TA, Smith KE, Gerald C, Walker MW. Galanin receptor subtypes. Trends Pharmacol Sci. 2000;21(3):109–117. doi:10.1016/S0165-6147(00)01446-210689365
  • Narváez M, Borroto-Escuela DO, Millón C, et al. Galanin receptor 2-neuropeptide Y Y1 receptor interactions in the dentate gyrus are related with antidepressant-like effects. Brain Struct Funct. 2016;221(8):4129–4139. doi:10.1007/s00429-015-1153-126666529
  • Narváez M, Borroto-Escuela DO, Santín L, et al. A novel integrative mechanism in anxiolytic behavior induced by galanin 2/neuropeptide Y Y1 receptor interactions on medial paracapsular intercalated amygdala in rats. Front Cell Neurosci. 2018;1(12):119. doi:10.3389/fncel.2018.00119
  • Díaz-Cabiale Z, Flores-Burgess A, Parrado C, et al. Galanin receptor/neuropeptide y receptor interactions in the central nervous system. Curr Protein Pept Sci. 2014;15(7):666–672. doi:10.2174/138920371566614090111170925175455
  • Kummer W. Galanin-and neuropeptide Y-like immunoreactivities coexist in paravertebral sympathetic neurones of the cat. Neurosci Lett. 1987;78(2):127–131. doi:10.1016/0304-3940(87)90620-32442671
  • Flores-Burgess A, Millón C, Gago B, et al. (1–15) enhancement of the behavioral effects of fluoxetine in the forced swimming test gives a new therapeutic strategy against depression. Neuropharmacol. 2017;118:233–241. doi:10.1016/j.neuropharm.2017.03.010
  • Borroto-Escuela DO, Li X, Tarakanov AO, et al. Existence of brain 5-HT1A–5-HT2A isoreceptor complexes with antagonistic allosteric receptor–receptor interactions regulating 5-HT1A receptor recognition. ACS Omega. 2017;2(8):4779–4789. doi:10.1021/acsomega.7b0062928920103
  • Borroto-Escuela DO, Narváez M, Ambrogini P, et al. Receptor–receptor interactions in multiple 5-HT1A heteroreceptor complexes in raphe-hippocampal 5-HT transmission and their relevance for depression and its treatment. Mol. 2018;23(6):1341. doi:10.3390/molecules23061341
  • Flores-Burgess A, Millón C, Gago B, et al. (1–15)-fluoxetine interaction in the novel object recognition test. Involvement of 5-HT1A receptors in the prefrontal cortex of the rats. Neuropharmacol. 2019;155:104–112. doi:10.1016/j.neuropharm.2019.05.023
  • de Souza MM, Silote GP, Herbst LS, Funck VR, Joca SRL, Beijamini V. The antidepressant-like effect of galanin in the dorsal raphe nucleus of rats involves GAL(2) receptors. Neurosci Lett. 2018;681:26–30. doi:10.1016/j.neulet.2018.05.029.29787787