1,147
Views
1
CrossRef citations to date
0
Altmetric
Review

Promising Stem Cell therapy in the Management of HIV and AIDS: A Narrative Review

ORCID Icon & ORCID Icon
Pages 89-105 | Published online: 08 Jul 2022

References

  • Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10:68. doi:10.1186/s13287-019-1165-5
  • Nadig RR. Stem cell therapy – hype or hope? A review. J Conserv Dent JCD. 2009;12:131–138. doi:10.4103/0972-0707.58329
  • Tasnim KN, Adrita SH, Hossain S, Akash SZ, Sharker S. The prospect of stem cells for HIV and cancer treatment: a review. Pharm Biomed Res. 2020;6:17–26.
  • Weissman IL. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science. 2000;287:1442–1446. doi:10.1126/science.287.5457.1442
  • Pernet O, Yadav SS, An DS. Stem cell–based therapies for HIV/AIDS. Adv Drug Deliv Rev. 2016;103:187–201. doi:10.1016/j.addr.2016.04.027
  • Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respir Int Rev Thorac Dis. 2013;85:3–10.
  • Ebrahimi A, Ahmadi H, Ghasrodashti ZP, et al. Therapeutic effects of stem cells in different body systems, a novel method that is yet to gain trust: a comprehensive review. Bosn J Basic Med Sci. 2021;21:672–701. doi:10.17305/bjbms.2021.5508
  • Introduction stem cells. Available from: https://www.dpz.eu/en/platforms/degenerative-diseases/research/introduction-stem-cells.html. Accessed December 19, 2021.
  • Hu J, Chen X, Fu S. Stem cell therapy for thalassemia: present and future. Chin J Tissue Eng Res. 2018;22:3431.
  • Aly RM. Current state of stem cell-based therapies: an overview. Stem Cell Investig. 2020;7:8. doi:10.21037/sci-2020-001
  • Chari S, Nguyen A, Saxe J. Stem cells in the clinic. Cell Stem Cell. 2018;22:781–782. doi:10.1016/j.stem.2018.05.017
  • De Luca M, Aiuti A, Cossu G, Parmar M, Pellegrini G, Robey PG. Advances in stem cell research and therapeutic development. Nat Cell Biol. 2019;21:801–811. doi:10.1038/s41556-019-0344-z
  • Hipp J, Atala A. Sources of stem cells for regenerative medicine. Stem Cell Rev. 2008;4:3–11. doi:10.1007/s12015-008-9010-8
  • Bobba S, Di Girolamo N, Munsie M, et al. The current state of stem cell therapy for ocular disease. Exp Eye Res. 2018;177:65–75. doi:10.1016/j.exer.2018.07.019
  • Khalid K, Padda J, Fernando RW, et al. Stem cell therapy and its significance in HIV infection. Cureus. 2021;13. doi: 10.1038/d41586-019-00798-3
  • Gq D, Morrell CN, Tarango C. Stem cells: roadmap to the clinic. J Clin Invest. 2010;121:120. doi:10.1172/JCI39828
  • Prentice DA. Adult Stem Cells. Circ Res. 2019;124:837–839. doi:10.1161/CIRCRESAHA.118.313664
  • McKee C, Chaudhry GR. Advances and challenges in stem cell culture. Colloids Surf B Biointerfaces. 2017;159:62–77. doi:10.1016/j.colsurfb.2017.07.051
  • Pérez López S, Otero Hernández J. Advances in stem cell therapy. In: López-Larrea C, López-Vázquez A, Suárez-álvarez B, editors. Stem Cell Transplantation. New York, NY: Springer US; 2012:290–313.
  • Zhang F-Q, Jiang J-L, Zhang J-T, Niu H, X-Q F, Zeng -L-L. Current status and future prospects of stem cell therapy in Alzheimer’s disease. Neural Regen Res. 2020;15:242–250. doi:10.4103/1673-5374.265544
  • Hu L, Zhao B, Wang S. Stem-cell therapy advances in China. Hum Gene Ther. 2018;29:188–196. doi:10.1089/hum.2017.224
  • Tadlock D Stem cell basics – introduction; 19.
  • Poulos J. The limited application of stem cells in medicine: a review. Stem Cell Res Ther. 2018;9:1. doi:10.1186/s13287-017-0735-7
  • Madl CM, Heilshorn SC, Blau HM. Bioengineering strategies to accelerate stem cell therapeutics. Nature. 2018;557:335–342. doi:10.1038/s41586-018-0089-z
  • Volarevic V, Markovic BS, Gazdic M, et al. Ethical and safety issues of stem cell-based therapy. Int J Med Sci. 2018;15:36–45. doi:10.7150/ijms.21666
  • Sutton MT, Bonfield TL. Stem cells: innovations in clinical applications. Stem Cells Int. 2014;2014:e516278. doi:10.1155/2014/516278
  • Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015;17:11–22. doi:10.1016/j.stem.2015.06.007
  • Taylor BS, Sobieszczyk ME, McCutchan FE, Hammer SM. The challenge of HIV-1 subtype diversity. N Engl J Med. 2008;358:1590–1602. doi:10.1056/NEJMra0706737
  • Levy JA. HIV pathogenesis: 25 years of progress and persistent challenges. AIDS Lond Engl. 2009;23:147–160. doi:10.1097/QAD.0b013e3283217f9f
  • Kitchen SG, Zack JA. Stem cell-based approaches to treating HIV infection. Curr Opin HIV AIDS. 2011;6:68–73. doi:10.1097/COH.0b013e3283412370
  • cirm 2.0. HIV/AIDS fact sheet. California’s Stem Cell Agency; 2009. Available from: https://www.cirm.ca.gov/our-progress/disease-information/hivaids-fact-sheet. Accessed December 18, 2021.
  • Galvin SR, Cohen MS. The role of sexually transmitted diseases in HIV transmission. Nat Rev Microbiol. 2004;2:33–42. doi:10.1038/nrmicro794
  • Fackler OT, Murooka TT, Imle A, Mempel TR. Adding new dimensions: towards an integrative understanding of HIV-1 spread. Nat Rev Microbiol. 2014;12:563–574. doi:10.1038/nrmicro3309
  • Cummins NW, Rizza S, Litzow MR, et al. Extensive virologic and immunologic characterization in an HIV-infected individual following allogeneic stem cell transplant and analytic cessation of antiretroviral therapy: a case study. PLOS Med. 2017;14:e1002461. doi:10.1371/journal.pmed.1002461
  • Roadmap to HIV eradication via stem cell therapy: study uncovers stem cells’ ability to restore immunity and repair gut damage caused by HIV. ScienceDaily. Available from: https://www.sciencedaily.com/releases/2021/06/210623194025.htm. Accessed December 18, 2021.
  • About HIV/AIDS; 2021. Available from: https://www.cdc.gov/hiv/basics/whatishiv.html. Accessed December 11, 2021.
  • Fanales-Belasio E, Raimondo M, Suligoi B, Buttò S. HIV virology and pathogenetic mechanisms of infection: a brief overview. Ann Ist Super Sanita. 2010;46:5–14. doi:10.4415/ANN_10_01_02
  • Qudah MAA, Zarea SA, Kallel-Jallouli SA. Mathematical modeling to study multistage stem cell transplantation in HIV-1 patients. Discrete Dyn Nat Soc. 2019;2019:1–8. doi:10.1155/2019/6379142
  • Sintya E, Wedari NLPH, Pranata IWA, Budayanti NNS. Antiviral mechanisms targeting regulatory genes Tat and Rev to defeat latent HIV-1 infected T cells: a literature review. J Clin Microbiol Infect Dis. 2021;1:16–23.
  • Admin. How HIV Infects a Cell; 2016. Available from: https://www.ipmglobal.org/how-hiv-infects-cell. Accessed December 11, 2021.
  • Second patient cured of HIV. BBC News; 2020.
  • Hütter G, Zaia JA. Allogeneic haematopoietic stem cell transplantation in patients with human immunodeficiency virus: the experiences of more than 25 years. Clin Exp Immunol. 2011;163:284–295. doi:10.1111/j.1365-2249.2010.04312.x
  • Coiras M, López-Huertas MR, Pérez-Olmeda M, Alcamí J. Understanding HIV-1 latency provides clues for the eradication of long-term reservoirs. Nat Rev Microbiol. 2009;7:798–812. doi:10.1038/nrmicro2223
  • Archin NM, Sung JM, Garrido C, Soriano-Sarabia N, Margolis DM. Eradicating HIV-1 infection: seeking to clear a persistent pathogen. Nat Rev Microbiol. 2014;12:750–764. doi:10.1038/nrmicro3352
  • Lee P-H, Keller MD, Hanley PJ, Bollard CM. Virus-specific T cell therapies for HIV: lessons learned from hematopoietic stem cell transplantation. Front Cell Infect Microbiol. 2020;10:298. doi:10.3389/fcimb.2020.00298
  • Allers K, Hütter G, Hofmann J, et al. Evidence for the cure of HIV infection by CCR5Δ32/Δ32 stem cell transplantation. Blood. 2011;117:2791–2799. doi:10.1182/blood-2010-09-309591
  • Bs R, P A, A K, Im R, Ls W. A hardwired HIV latency program. Cell. 2015;160:990–1001.
  • Aung AK, Trubiano JA, Spelman DW. Travel risk assessment, advice and vaccinations in immunocompromised travellers (HIV, solid organ transplant and haematopoeitic stem cell transplant recipients): a review. Travel Med Infect Dis. 2015;13:31–47. doi:10.1016/j.tmaid.2014.12.007
  • Global HIV & AIDS statistics — fact sheet. Available from: https://www.unaids.org/en/resources/fact-sheet. Accessed November 2, 2021.
  • Brenchley JM, Silvestri G, Douek DC. Nonprogressive and progressive primate immunodeficiency lentivirus infections. Immunity. 2010;32:737–742. doi:10.1016/j.immuni.2010.06.004
  • Barré-Sinoussi F, Chermann JC, Rey F, et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science. 1983;220:868–871. doi:10.1126/science.6189183
  • Halder UC. Bone marrow stem cells to destroy circulating HIV: a hypothetical therapeutic strategy. J Biol Res-Thessalon. 2018;25:1–6. doi:10.1186/s40709-018-0075-5
  • O’Brien SJ, Dean M. In search of AIDS-resistance genes. Sci Am. 1997;277:44–51. doi:10.1038/scientificamerican0997-44
  • Barré-Sinoussi F, Ross AL, Delfraissy J-F. Past, present and future: 30 years of HIV research. Nat Rev Microbiol. 2013;11:877–883.
  • Campbell EM, Hope TJ. HIV-1 capsid: the multifaceted key player in HIV-1 infection. Nat Rev Microbiol. 2015;13:471–483. doi:10.1038/nrmicro3503
  • Engelman A, Cherepanov P. The structural biology of HIV-1: mechanistic and therapeutic insights. Nat Rev Microbiol. 2012;10:279–290. doi:10.1038/nrmicro2747
  • Kosaric N, Kiwanuka H, Gurtner GC. Stem cell therapies for wound healing. Expert Opin Biol Ther. 2019;19:575–585. doi:10.1080/14712598.2019.1596257
  • Khalid K, Padda J, Fernando RW, et al. Stem cell therapy and its significance in HIV infection. Cureus. 2021;13. doi: 10.7759/cureus.17507
  • Kuritzkes DR. Why cure, why now? J Med Ethics. 2017;43:67–70. doi:10.1136/medethics-2015-103113
  • Hütter G. Stem cell transplantation in strategies for curing HIV/AIDS. AIDS Res Ther. 2016;13:31. doi:10.1186/s12981-016-0114-y
  • Timmermans F, Velghe I, Vanwalleghem L, et al. Generation of T cells from human embryonic stem cell-derived hematopoietic zones. J Immunol Baltim Md 1950. 2009;182:6879–6888.
  • Galic Z, Kitchen SG, Kacena A, et al. T lineage differentiation from human embryonic stem cells. Proc Natl Acad Sci U S A. 2006;103:11742–11747. doi:10.1073/pnas.0604244103
  • Kordelas L, Verheyen J, Esser S. Shift of HIV tropism in stem-cell transplantation with CCR5 delta 32 mutation. New England Journal of Medicine. 2014;371:880–882. doi:10.1056/NEJMc1405805
  • Gupta RK, Abdul-Jawad S, McCoy LE, et al. HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stem-cell transplantation. Nature. 2019;568:244–248. doi:10.1038/s41586-019-1027-4
  • Cagnon L, Rossi JJ. Downregulation of the CCR5 beta-chemokine receptor and inhibition of HIV-1 infection by stable VA1-ribozyme chimeric transcripts. Antisense Nucleic Acid Drug Dev. 2000;10:251–261. doi:10.1089/108729000421439
  • Role of transplant. international myeloma foundation. Available from: https://www.myeloma.org/autologous-stem-cell-transplant. Accessed December 12, 2021.
  • Krishnan A. Stem cell transplantation in HIV-infected patients. Curr Opin HIV AIDS. 2009;4:11–15. doi:10.1097/COH.0b013e32831a6fc9
  • Ambinder RF, Wu J, Logan B, et al. Allogeneic hematopoietic cell transplant for HIV patients with hematologic malignancies: the BMT CTN-0903/AMC-080 trial. Biol Blood Marrow Transplant. 2019;25:2160–2166. doi:10.1016/j.bbmt.2019.06.033
  • Peterson CW, Wang J, Norman KK, et al. Long-term multilineage engraftment of autologous genome-edited hematopoietic stem cells in nonhuman primates. Blood. 2016;127:2416–2426. doi:10.1182/blood-2015-09-672337
  • Yoshinaga N, Kanda J, Aisa Y, et al. Impact of HIV infection on transplant outcomes after autologous peripheral blood stem cell transplantation: a retrospective study of Japanese registry data. Biol Blood Marrow Transplant. 2018;24:1596–1601. doi:10.1016/j.bbmt.2018.03.009
  • Giralt S, Bishop MR. Principles and overview of allogeneic hematopoietic stem cell transplantation. Cancer Treat Res. 2009;144:1–21.
  • Kuritzkes DR. Hematopoietic stem cell transplantation for HIV cure. J Clin Invest. 2016;126:432–437. doi:10.1172/JCI80563
  • Mitsuyasu RT, Zack JA, Macpherson JL, Symonds GP. Phase I/II clinical trials using gene-modified adult hematopoietic stem cells for HIV: lessons learnt. Stem Cells Int. 2011;2011:e393698. doi:10.4061/2011/393698
  • DiGiusto DL, Krishnan A, Li L, et al. RNA-based gene therapy for HIV with lentiviral vector-modified CD34 (+) cells in patients undergoing transplantation for AIDS-related lymphoma. Sci Transl Med. 2010;2:36ra43. doi:10.1126/scitranslmed.3000931
  • Joseph A, Zheng JH, Follenzi A, et al. Lentiviral vectors encoding human immunodeficiency virus type 1 (HIV-1)-specific T-cell receptor genes efficiently convert peripheral blood CD8 T lymphocytes into cytotoxic T lymphocytes with potent in vitro and in vivo HIV-1-specific inhibitory activity. J Virol. 2008;82:3078–3089. doi:10.1128/JVI.01812-07
  • Luo XM, Maarschalk E, O’Connell RM, Wang P, Yang L, Baltimore D. Engineering human hematopoietic stem/progenitor cells to produce a broadly neutralizing anti-HIV antibody after in vitro maturation to human B lymphocytes. Blood. 2009;113:1422–1431. doi:10.1182/blood-2008-09-177139
  • Joseph A, Zheng JH, Chen K, et al. Inhibition of in vivo HIV infection in humanized mice by gene therapy of human hematopoietic stem cells with a lentiviral vector encoding a broadly neutralizing anti-HIV antibody. J Virol. 2010;84:6645–6653. doi:10.1128/JVI.02339-09
  • Rossi JJ, June CH, Kohn DB. Genetic therapies against HIV. Nat Biotechnol. 2007;25:1444–1454. doi:10.1038/nbt1367
  • Yang OO, Tran AC, Kalams SA, Johnson RP, Roberts MR, Walker BD. Lysis of HIV-1-infected cells and inhibition of viral replication by universal receptor T cells. Proc Natl Acad Sci U S A. 1997;94:11478–11483. doi:10.1073/pnas.94.21.11478
  • Kitchen SG, Bennett M, Galić Z, et al. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice. PLoS One. 2009;4:e8208. doi:10.1371/journal.pone.0008208
  • Saglio F, Hanley PJ, Bollard CM. The time is now: moving toward virus-specific T cells after allogeneic hematopoietic stem cell transplantation as the standard of care. Cytotherapy. 2014;16:149–159. doi:10.1016/j.jcyt.2013.11.010
  • Hütter G. More on shift of HIV tropism in stem-cell transplantation with CCR5 Delta32/Delta32 mutation. N Engl J Med. 2014;371:2437–2438.
  • Gupta RK, Peppa D, Hill AL, et al. Evidence for HIV-1 cure after CCR5Δ32/Δ32 allogeneic haemopoietic stem-cell transplantation 30 months post analytical treatment interruption: a case report. Lancet HIV. 2020;7:e340–7. doi:10.1016/S2352-3018(20)30069-2
  • Henrich TJ, Hanhauser E, Marty FM, et al. Antiretroviral-free HIV-1 remission and viral rebound after allogeneic stem cell transplantation: report of 2 cases. Ann Intern Med. 2014;161:319–327. doi:10.7326/M14-1027
  • Myeloablation. 2011. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/myeloablation. Accessed December 12, 2021.
  • Hütter G, Nowak D, Mossner M, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009;360:692–698. doi:10.1056/NEJMoa0802905
  • Leen AM, Myers GD, Sili U, et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med. 2006;12:1160–1166.
  • Perica K, Varela JC, Oelke M, Schneck J. Adoptive T cell immunotherapy for cancer. Rambam Maimonides Med J. 2015;6:e0004. doi:10.5041/RMMJ.10179
  • Chupradit K, Khamaikawin W, Sakkhachornphop S, et al. Engineered zinc finger protein targeting 2LTR Inhibits HIV integration in hematopoietic stem and progenitor cell-derived macrophages: in vitro study. Int J Mol Sci. 2022;23:2331. doi:10.3390/ijms23042331
  • Gratwohl A, Baldomero H, Aljurf M, et al. Hematopoietic stem cell transplantation A global perspective. JAMA J Am Med Assoc. 2010;303:1617–1624. doi:10.1001/jama.2010.491
  • Stem-cell therapy holds promise for eliminating HIV infection. Available from: https://www.uclahealth.org/u-magazine/stem-cell-therapy-holds-promise-for-eliminating-hiv-infection. Accessed December 19, 2021.
  • Wang L, Zhang Z, Xu R, et al. Human umbilical cord mesenchymal stem cell transfusion in immune non-responders with AIDS: a multicenter randomized controlled trial. Signal Transduct Target Ther. 2021;6:1–8. doi:10.1038/s41392-020-00451-w
  • Wilkinson DA, Operskalski EA, Busch MP, Mosley JW, Koup RA. A 32-bp deletion within the CCR5 locus protects against transmission of parenterally acquired human immunodeficiency virus but does not affect progression to AIDS-defining illness. J Infect Dis. 1998;178:1163–1166. doi:10.1086/515675
  • What stem cell transplants can teach us about curing HIV: the foundation for aids research. Available from: https://www.amfar.org/what-stem-cell-transplants-can-teach-us-about-curing-hiv/. Accessed December 19, 2021.
  • Brits E. HIV: second person free from HIV after stem cell transplant. Daily Maverick; 2020. Available from: https://www.dailymaverick.co.za/article/2020-03-17-second-person-free-from-hiv-after-stem-cell-transplant/. Accessed December 15, 2021.
  • Haworth KG, Peterson CW, Kiem H-P. CCR5-edited gene therapies for HIV cure: closing the door to viral entry. Cytotherapy. 2017;19:1325–1338. doi:10.1016/j.jcyt.2017.05.013
  • Schwarze LI, Sonntag T, Wild S, Schmitz S, Uhde A, Fehse B. Automated production of CCR5-negative CD4+-T cells in a GMP-compatible, clinical scale for treatment of HIV-positive patients. Gene Ther. 2021;28:572–587. doi:10.1038/s41434-021-00259-5
  • Hosseini I, Gabhann FM. Mechanistic models predict efficacy of CCR5-deficient stem cell transplants in HIV patient populations. CPT Pharmacomet Syst Pharmacol. 2016;5:82–90. doi:10.1002/psp4.12059
  • Mehmetoglu-Gurbuz T, Yeh R, Garg H, Joshi A. Combination gene therapy for HIV using a conditional suicidal gene with CCR5 knockout. Virol J. 2021;18:1–14. doi:10.1186/s12985-021-01501-7
  • Sharma G, Rehman S, Sharma AR. Therapeutic applications of CRISPR/Cas9 technology for infectious diseases. In: Hameed S, Rehman S, editors. Nanotechnology for Infectious Diseases. Singapore: Springer; 2022:557–573.
  • Harper KN. New research on using CRISPR/Cas9 to treat HIV. AIDS. 2017;31:N7.
  • Hildebrandt CC, Marron JM. Justice in CRISPR/Cas9 research and clinical applications. AMA J Ethics. 2018;20:826–833.
  • Koniali L, Lederer CW, Kleanthous M. Therapy development by genome editing of hematopoietic stem cells. Cells. 2021;10:1492. doi:10.3390/cells10061492
  • Worthington AK, Forsberg EC. A CRISPR view of hematopoietic stem cells: moving innovative bioengineering into the clinic. Am J Hematol. 2022. doi:10.1002/ajh.26588
  • Redman M, King A, Watson C, King D. What is CRISPR/Cas9? Arch Dis Child - Educ Pract. 2016;101:213–215. doi:10.1136/archdischild-2016-310459
  • Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–826. doi:10.1126/science.1232033
  • Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31:397–405. doi:10.1016/j.tibtech.2013.04.004
  • Widjaya MA, Ju J-C, Lee S-D. CRISPR-edited stem cell transplantation for HIV-related gene modification in vivo: a systematic review. Stem Cell Rev Rep. 2022;18:1743–1755. doi:10.1007/s12015-022-10345-9
  • Xu L, Yang H, Gao Y, et al. CRISPR/Cas9-mediated CCR5 ablation in human hematopoietic stem/progenitor cells confers HIV-1 resistance in vivo. Mol Ther J Am Soc Gene Ther. 2017;25(8):1782–1789. doi:10.1016/j.ymthe.2017.04.027
  • Sequential LASER ART and CRISPR Treatments Eliminate HIV-1 in a subset of infected humanized mice | nature communications. Available from: https://www.nature.com/articles/s41467-019-10366-y. Accessed May 29, 2022.
  • Gao Z, Fan M, Das AT, Herrera-Carrillo E, Berkhout B. Extinction of all infectious HIV in cell culture by the CRISPR-Cas12a system with only a single crRNA. Nucleic Acids Res. 2020;48:5527–5539. doi:10.1093/nar/gkaa226
  • Hartweger H, McGuire AT, Horning M, et al. HIV-specific humoral immune responses by CRISPR/Cas9-edited B cells. J Exp Med. 2019;216:1301–1310. doi:10.1084/jem.20190287
  • Herskovitz J, Hasan M, Patel M, et al. CRISPR-Cas9 mediated exonic disruption for HIV-1 elimination. eBioMedicine. 2021;73:103678.
  • Hu W, Kaminski R, Yang F, et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci. 2014;111:11461–11466. doi:10.1073/pnas.1405186111
  • Lai M, Maori E, Quaranta P, et al. CRISPR/Cas9 ablation of integrated HIV-1 accumulates proviral DNA circles with reformed long terminal repeats. J Virol. 2021;95:e01358–21. doi:10.1128/JVI.01358-21
  • Li S, Holguin L, Burnett JC. CRISPR-Cas9-mediated gene disruption of HIV-1 co-receptors confers broad resistance to infection in human T cells and humanized mice. Mol Ther - Methods Clin Dev. 2022;24:321–331. doi:10.1016/j.omtm.2022.01.012
  • Li C, Guan X, Du T, et al. Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. J Gen Virol. 2015;96:2381–2393. doi:10.1099/vir.0.000139
  • Liu Y, Jeeninga RE, Klaver B, Berkhout B, Das AT. Transient CRISPR-Cas treatment can prevent reactivation of HIV-1 replication in a latently infected T-cell line. Viruses. 2021;13:2461. doi:10.3390/v13122461
  • Wang W, Ye C, Liu J, Zhang D, Kimata JT, Zhou P. CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection. PLoS One. 2014;9:e115987. doi:10.1371/journal.pone.0115987
  • Kambal A, Mitchell G, Cary W, et al. Generation of HIV-1 resistant and functional macrophages from hematopoietic stem cell–derived induced pluripotent stem cells. Mol Ther. 2011;19:584–593. doi:10.1038/mt.2010.269
  • Higaki K, Hirao M, Kawana-Tachikawa A, et al. Generation of HIV-resistant macrophages from IPSCs by using transcriptional gene silencing and promoter-targeted RNA. Mol Ther - Nucleic Acids. 2018;12:793–804. doi:10.1016/j.omtn.2018.07.017
  • Ye L, Wang J, Teque F, et al. Generation of HIV-1-infected patients’ gene-edited induced pluripotent stem cells using feeder-free culture conditions. AIDS. 2020;34:1127–1139. doi:10.1097/QAD.0000000000002535
  • Hübscher D, Rebs S, Haupt L, et al. A high-throughput method as a diagnostic tool for HIV detection in patient-specific induced pluripotent stem cells generated by different reprogramming methods. Stem Cells Int. 2019;2019:e2181437. doi:10.1155/2019/2181437
  • Morvan MG, Teque F, Ye L, et al. Genetically edited CD34+ cells derived from human iPS cells in vivo but not in vitro engraft and differentiate into HIV-resistant cells. Proc Natl Acad Sci. 2021;118:e2102404118. doi:10.1073/pnas.2102404118
  • Sun B, Kitchen S, Tang N, Garza A, Jacob S, Pulliam L. Engineered induced-pluripotent stem cell derived monocyte extracellular vesicles alter inflammation in HIV humanized mice. Extracell Vesicles Circ Nucleic Acids. 2022;3:118–132. doi:10.20517/evcna.2022.11
  • Miki S, Kawai Y, Nakayama-Hosoya K, et al. Sustainable antiviral efficacy of rejuvenated HIV-specific cytotoxic T lymphocytes generated from induced pluripotent stem cells. J Virol. 2022;96:e02217–21. doi:10.1128/jvi.02217-21
  • Sg D, A B, B B, et al. Towards an HIV cure: a global scientific strategy. Nat Rev Immunol. 2012;12:607–614.
  • Warren M. Second patient free of HIV after stem-cell therapy. Nature. 2019. doi:10.1038/d41586-019-00798-3
  • Second HIV patient cured with stem cell treatment. Cells4Life. 2020. Available from: https://cells4life.com/2020/06/second-hiv-patient-cured-with-stem-cell-treatment/. Accessed December 15, 2021.
  • Second man is HIV-free after stem cell transplant. WebMD. Available from: https://www.webmd.com/hiv-aids/news/20190305/second-man-is-hiv-free-after-stem-cell-transplant. Accessed December 15, 2021.
  • CCR5 C-C motif chemokine receptor 5. Available from: https://www.ncbi.nlm.nih.gov/gene/1234. Accessed December 12, 2021.
  • Lanese N A third person has been cured of HIV. Available from: https://www.livescience.com/third-person-cured-hiv-stem-cell-transplant-from-cord-blood?utm_source=SmartBrief&utm_medium=email&utm_campaign=368B3745-DDE0-4A69-A2E8-62503D85375D&utm_content=8BA5CBA0-D07E-4293-BF21-A7A342CCCFA1&utm_term=e055be93-7a15-49d3-94b1-d62b98d0175f. Accessed March 19, 2022.
  • Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–872.
  • Yu H, Lu K, Zhu J, Wang J. Stem cell therapy for ischemic heart diseases. Br Med Bull. 2017;121:135–154. doi:10.1093/bmb/ldw059
  • Park I-H, Zhao R, West JA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008;451:141–146. doi:10.1038/nature06534