79
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Enzymatic Routes for Chiral Amine Synthesis: Protein Engineering and Process Optimization

, , , ORCID Icon, &
Pages 165-179 | Received 09 Feb 2024, Accepted 14 Jun 2024, Published online: 25 Jun 2024

References

  • Höhne M, Bornscheuer UT. Biocatalytic routes to optically active amines. ChemCatChem. 2009;1(1):42–51. doi:10.1002/cctc.200900110
  • Desai AA. Sitagliptin manufacture: a compelling tale of green chemistry, process intensification, and industrial asymmetric catalysis. Angew Chem Int Ed Engl. 2011;50(9):1974–1976. doi:10.1002/anie.201007051
  • Fuchs M, Koszelewski D, Tauber K, Kroutil W, Faber K. Chemoenzymatic asymmetric total synthesis of (S)-Rivastigmine using ω-transaminases. Chem. Commun. 2010;46(30):5500–5502. doi:10.1039/c0cc00585a
  • Bedell TA, Hone GAB, Bois JD, Sorensen EJ. An expedient synthesis of maraviroc (UK-427,857) via C-H functionalization. Tetrahedron Lett. 2015;56(23):3620–3623. doi:10.1016/j.tetlet.2015.01.074
  • Lakhani P, Modi CK. Shaping enantiochemistry: recent advances in enantioselective reactions via heterogeneous chiral catalysis. Mol Catal. 2023;548:113429. doi:10.1016/j.mcat.2023.113429
  • Trowbridge A, Walton SM, Gaunt MJ. New strategies for the transition-metal catalyzed synthesis of aliphatic amines. Chem Rev. 2020;120(5):2613–2692. doi:10.1021/acs.chemrev.9b00462
  • Economidou M, Mistry N, Wheelhouse KMP, Lindsay DM. Palladium extraction following metal-catalyzed reactions: recent advances and applications in the pharmaceutical industry. Org Process Res Dev. 2023;27(9):1585–1615. doi:10.1021/acs.oprd.3c00210
  • Bell EL, Finnigan W, France SP, et al. Biocatalysis. Nat Rev Method Primers. 2021;1:46.
  • Wang H, Lin Q, Liu M, et al. Molecular docking and site-directed mutagenesis of GH49 family dextranase for the preparation of high-degree polymerization isomaltooligosaccharide. Biomolecules. 2023;13(2):300. doi:10.3390/biom13020300
  • Pullmann P, Ulpinnis C, Marillonnet S, Gruetzner R, Neumann S, Weissenborn MJ. Golden Mutagenesis: an efficient multi-site-saturation mutagenesis approach by Golden Gate cloning with automated primer design. Sci Rep. 2019;9(1):10932. doi:10.1038/s41598-019-47376-1
  • Friesner RA, Banks JL, Murphy RB, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47(7):1739–1749. doi:10.1021/jm0306430
  • Mariano DCB, Santos LH, Machado KDS, Werhli AV, De lima LHF, de Melo-Minardi RC. A computational method to propose mutations in enzymes based on Structural Signature Variation (SSV). Int J Mol Sci. 2019;20(2):333. doi:10.3390/ijms20020333
  • Ubhayasekera W. Homology Modeling for Enzyme Design. Methods Mol Biol. 2018;1796:301–320.
  • Fondeur-Gelinotte M, Lattard V, Oriol R, et al. Phylogenetic and mutational analyses reveal key residues for UDP-glucuronic acid binding and activity of beta1,3-glucuronosyltransferase I (GlcAT-I). Protein Sci. 2006;15(7):1667–1678. doi:10.1110/ps.062089106
  • Casadevall G, Duran C, Osuna S. AlphaFold2 and deep learning for elucidating enzyme conformational flexibility and its application for design. JACS Au. 2023;3(6):1554–1562. doi:10.1021/jacsau.3c00188
  • Wahart AJC, Staniland J, Miller GJ, Cosgrove SC. Oxidase enzymes as sustainable oxidation catalysts. Royal Soc Open Sci. 2022;9(1):211572. doi:10.1098/rsos.211572
  • Ghislieri D, Green AP, Pontini M, et al. Engineering an enantioselective amine oxidase for the synthesis of pharmaceutical building blocks and alkaloid natural products. J Am Chem Soc. 2013;135(29):10863–10869. doi:10.1021/ja4051235
  • Alexeeva M, Enright A, Dawson MJ, Mahmoudian M, Turner NJ. Deracemization of alpha-methylbenzylamine using an enzyme obtained by in vitro evolution. Angew Chem Int Ed Engl. 2002;41(17):3177–3180. doi:10.1002/1521-3773(20020902)41:17<3177::AID-ANIE3177>3.0.CO;2-P
  • Carr R, Alexeeva M, Dawson MJ, Gotor-Fernandez V, Humphrey CE, Turner NJ. Directed evolution of an amine oxidase for the preparative deracemisation of cyclic secondary amines. Chembiochem. 2005;6(4):637–639. doi:10.1002/cbic.200400329
  • Dunsmore CJ, Carr R, Fleming T, Turner NJ. A chemo-enzymatic route to enantiomerically pure cyclic tertiary amines. J Am Chem Soc. 2006;128(7):2224–2225. doi:10.1021/ja058536d
  • Kelly SA, Pohle S, Wharry S, et al. Application of omega-transaminases in the pharmaceutical industry. Chem Rev. 2018;118(1):349–367. doi:10.1021/acs.chemrev.7b00437
  • Adams JP, Brown MJB, Diaz-Rodriguez A, Lloyd RC, Roiban G-D. Biocatalysis: a pharma perspective. ASC. 2019;361:2421–2432.
  • Iwasaki A, Yamada Y, Kizaki N, Ikenaka Y, Hasegawa J. Microbial synthesis of chiral amines by (R)-specific transamination with Arthrobacter sp. KNK168. Appl Microbiol Biotechnol. 2006;69(5):499–505. doi:10.1007/s00253-005-0002-1
  • Savile CK, Janey JM, Mundorff EC, et al. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science. 2010;329(5989):305–309. doi:10.1126/science.1188934
  • Midelfort KS, Kumar R, Han S, et al. Redesigning and characterizing the substrate specificity and activity of Vibrio fluvialis aminotransferase for the synthesis of imagabalin. Protein Eng Des Sel. 2013;26(1):25–33. doi:10.1093/protein/gzs065
  • Gomm A, Lewis W, Green AP, O’Reilly E. A new generation of smart amine donors for transaminase-mediated biotransformations. Chemistry. 2016;22(36):12692–12695. doi:10.1002/chem.201603188
  • Musa MM, Hollmann F, Mutti FG. Synthesis of enantiomerically pure alcohols and amines via biocatalytic deracemisation methods. Catal Sci Technol. 2019;9(20):5487–5503. doi:10.1039/C9CY01539F
  • Gilio AK, Thorpe TW, Turner N, Grogan G. Reductive aminations by imine reductases: from milligrams to tons. Chem Sci. 2022;13(17):4697–4713. doi:10.1039/D2SC00124A
  • Knaus T, Bohmer W, Mutti FG. Amine dehydrogenases: efficient biocatalysts for the reductive amination of carbonyl compounds. Green Chem. 2017;19(2):453–463. doi:10.1039/C6GC01987K
  • Bommarius BR, Schurmann M, Bommarius AS. A novel chimeric amine dehydrogenase shows altered substrate specificity compared to its parent enzymes. Chem Commun. 2014;50(95):14953–14955. doi:10.1039/C4CC06527A
  • Liu J, Kong W, Bai J, et al. Amine dehydrogenases: current status and potential value for chiral amine synthesis. ChemCatalysis. 2022;2:1288–1314.
  • Patil MD, Grogan G, Bommarius A, Yun H. Oxidoreductase-catalyzed synthesis of chiral amines. ACS Catal. 2018;8(12):10985–11015. doi:10.1021/acscatal.8b02924
  • Abrahamson MJ, Wong JW, Bommarius AS. The evolution of an amine dehydrogenase biocatalyst for the asymmetric production of chiral amines. ASC. 2013;355:1780–1786.
  • Vanhooke JL, Thoden JB, Brunhuber NM, Blanchard JS, Holden HM. Phenylalanine dehydrogenase from Rhodococcus sp. M4: high-resolution X-ray analyses of inhibitory ternary complexes reveal key features in the oxidative deamination mechanism. Biochemistry. 1999;38(8):2326–2339. doi:10.1021/bi982244q
  • Liu J, Pang BQW, Adams JP, Snajdrova R, Li Z. Coupled immobilized amine dehydrogenase and glucose dehydrogenase for asymmetric synthesis of amines by reductive amination with cofactor recycling. ChemCatChem. 2016;9(3):425–431. doi:10.1002/cctc.201601446
  • Pushpanath A, Siirola E, Bornadel A, Woodlock D, Schell U. Understanding and overcoming the limitations of bacillus badius and caldalkalibacillus thermarum amine dehydrogenases for biocatalytic reductive amination. ACS Catal. 2017;7(5):3204–3209. doi:10.1021/acscatal.7b00516
  • Dave DJ. Saxagliptin: a dipeptidyl peptidase IV inhibitor in the treatment of type II diabetes mellitus. J Pharmacol Pharmacother. 2011;2(4):230–235. doi:10.4103/0976-500X.85934
  • Hanson RL, Goldberg SL, Brzozowski DB, et al. Preparation of an amino acid intermediate for the dipeptidyl peptidase iv inhibitor, saxagliptin, using a modified phenylalanine dehydrogenase. ASC. 2007;349:1369–1378.
  • Khanam W, Dubey NC. Recent advances in immobilized ω-transaminases for chiral amine synthesis. Mater Today Chem. 2022;24:100922.
  • Breuer M, Ditrich K, Habicher T, et al. Industrial methods for the production of optically active intermediates. Angew Chem Int Ed Engl. 2004;43(7):788–824. doi:10.1002/anie.200300599
  • Du Y, Dong W, Jiang J, et al. 种来源于Burkholderia phytofirmans PsJN的ω-转氨酶的表达纯化及性质分析 [Expression and characterization of a novel omega-transaminase from Burkholderia phytofirmans PsJN]. Sheng Wu Gong Cheng Xue Bao. 2016;32(7):912–926. Chinese. doi:10.13345/j.cjb.150456
  • Agrawal YK, Bhatt HG, Raval HG, Oza PM, Gogoi PJ. Chirality--a new era of therapeutics. Mini Rev Med Chem. 2007;7(5):451–460. doi:10.2174/138955707780619617
  • Yi -S-S, Lee C-W, Kim J, Kyung D, Kim B-G, Lee Y-S. Covalent immobilization of ω-transaminase from Vibrio fluvialis JS17 on chitosan beads. Process Biochem. 2007;42(5):895–898. doi:10.1016/j.procbio.2007.01.008
  • Koplanyi G, Bell E, Molnar Z, et al. Novel approach for the isolation and immobilization of a recombinant transaminase: applying an advanced nanocomposite system. Chembiochem. 2023;24(7):e202200713. doi:10.1002/cbic.202200713
  • Heinks T, Montua N, Teune M, et al. Comparison of four immobilization methods for different transaminases. Catalysts. 2023;13(2):300. doi:10.3390/catal13020300
  • Menegatti T, Znidarsic-Plazl P. Hydrogel-based enzyme and cofactor co-immobilization for efficient continuous transamination in a microbioreactor. Front Bioeng Biotechnol. 2021;9:752064. doi:10.3389/fbioe.2021.752064
  • Ghislieri D, Turner NJ. Biocatalytic approaches to the synthesis of enantiomerically pure chiral amines. Topics Catal. 2014;57(5):284–300. doi:10.1007/s11244-013-0184-1
  • Pollard DJ, Woodley JM. Biocatalysis for pharmaceutical intermediates: the future is now. Trends Biotechnol. 2007;25(2):66–73. doi:10.1016/j.tibtech.2006.12.005
  • Abrahamson MJ, Vazquez-Figueroa E, Woodall NB, Moore JC, Bommarius AS. Development of an amine dehydrogenase for synthesis of chiral amines. Angew Chem Int Ed Engl. 2012;51(16):3969–3972. doi:10.1002/anie.201107813
  • D. Patil M, Grogan G, Bommarius A, Yun H. Recent advances in ω-transaminase-mediated biocatalysis for the enantioselective synthesis of chiral amines. Catalysts. 2018;8(7):254. doi:10.3390/catal8070254
  • Sattler JH, Fuchs M, Tauber K, et al. Redox self-sufficient biocatalyst network for the amination of primary alcohols. Angew Chem Int Ed Engl. 2012;51(36):9156–9159. doi:10.1002/anie.201204683
  • Huo H, Yao G, Wang S. Economy assessment for the chiral amine production with comparison of reductive amination and transamination routes by multi-enzyme system. Catalysts. 2020;10(12):1451. doi:10.3390/catal10121451
  • Illanes A, Wilson L. Parameters for the evaluation of immobilized enzymes under process conditions. Methods Mol Biol. 2020;2100:65–81.
  • Sheldon RA. Selective catalytic synthesis of fine chemicals: opportunities and trends. J Mol Catal. 1996;107(1–3):75–83. doi:10.1016/1381-1169(95)00229-4
  • Sheldon RA. Catalysis: the key to waste minimization. J Chem Technol Biotechnol. 1997;68(4):381–388. doi:10.1002/(SICI)1097-4660(199704)68:4<381::AID-JCTB620>3.0.CO;2-3
  • Li T, Liang J, Ambrogelly A, et al. Efficient, chemoenzymatic process for manufacture of the Boceprevir bicyclic [3.1.0]proline intermediate based on amine oxidase-catalyzed desymmetrization. J Am Chem Soc. 2012;134(14):6467–6472. doi:10.1021/ja3010495
  • Njoroge FG, Chen KX, Shih NY, Piwinski JJ. Challenges in modern drug discovery: a case study of boceprevir, an HCV protease inhibitor for the treatment of hepatitis C virus infection. Acc Chem Res. 2008;41(1):50–59. doi:10.1021/ar700109k
  • Kumar R, Karmilowicz MJ, Burke D, et al. Biocatalytic reductive amination from discovery to commercial manufacturing applied to abrocitinib JAK1 inhibitor. Nat Catal. 2021;4(9):775–782. doi:10.1038/s41929-021-00671-5
  • Duan J, Li B, Qin Y, Dong Y, Ren J, Li G. Recent progress in directed evolution of stereoselective monoamine oxidases. Bioresources Bioprocess. 2019;6(1):37. doi:10.1186/s40643-019-0272-6
  • Green AP, Turner NJ. Biocatalytic retrosynthesis: redesigning synthetic routes to high-value chemicals. Perspect Sci. 2016;9:42–48. doi:10.1016/j.pisc.2016.04.106
  • Herter S, Medina F, Wagschal S, Benhaim C, Leipold F, Turner NJ. Mapping the substrate scope of monoamine oxidase (MAO-N) as a synthetic tool for the enantioselective synthesis of chiral amines. Bioorg Med Chem. 2018;26(7):1338–1346. doi:10.1016/j.bmc.2017.07.023
  • Guo F, Berglund P. Transaminase biocatalysis: optimization and application. Green Chem. 2017;19(2):333–360. doi:10.1039/C6GC02328B
  • Matzel P, Gand M, Höhne M. One-step asymmetric synthesis of (R)- and (S)-rasagiline by reductive amination applying imine reductases. Green Chem. 2017;19(2):385–389. doi:10.1039/C6GC03023H
  • Zhang J, Ma Y, Zhu F, et al. Structure-guided semi-rational design of an imine reductase for enantio-complementary synthesis of pyrrolidinamine. Chem Sci. 2023;14(16):4265–4272. doi:10.1039/D2SC07014F