537
Views
27
CrossRef citations to date
0
Altmetric
Review

Photobiomodulation for the management of alopecia: mechanisms of action, patient selection and perspectives

Pages 669-678 | Published online: 06 Sep 2019

References

  • Mester A, Mester A. The history of photobiomodulation: endre mester (1903-1984). Photomed Laser Surg. 2017;35:393–394. doi:10.1089/pho.2017.433228783466
  • McGuff PE, Deterling RA Jr., Gottlieb LS. Tumoricidal effect of laser energy on experimental and human malignant tumors. N Engl J Med. 1965;273:490–492. doi:10.1056/NEJM1965082627309065318702
  • Mester E, Szende B, Tota JG. [Effect of low intensity laser radiation, repeatedly administered over a long period, on the skin and inner organs of mice]. Radiobiol Radiother (Berl). 1969;10:371–377.5349849
  • Mester E, Jaszsagi-Nagy E. Biological effects of laser radiation. Radiobiol Radiother (Berl). 1971;12:377–385.4946584
  • Mester E, Szende B, Spiry T, Scher A. Stimulation of wound healing by laser rays. Acta Chir Acad Sci Hung. 1972;13:315–324.4659882
  • Mester E, Szende B, Gartner P. [The effect of laser beams on the growth of hair in mice]. Radiobiol Radiother (Berl). 1968;9:621–626.5732466
  • Anders JJ, Lanzafame RJ, Arany PR. Low-level light/laser therapy versus photobiomodulation therapy. Photomed Laser Surg. 2015;33:183–184. doi:10.1089/pho.2015.984825844681
  • Heiskanen V, Hamblin MR. Photobiomodulation: lasers vs. Light Emitting Diodes? Photochem Photobiol Sci. 2018;17:1003–1017. doi:10.1039/c8pp90049c30044464
  • Lubart R, Wollman Y, Friedmann H, Rochkind S, Laulicht I. Effects of visible and near-infrared lasers on cell cultures. J Photochem Photobiol B. 1992;12:305–310.1321905
  • Gupta A, Dai T, Hamblin MR. Effect of red and near-infrared wavelengths on low-level laser (light) therapy-induced healing of partial-thickness dermal abrasion in mice. Lasers Med Sci. 2013;29(1):257–265.23619627
  • Wu Q, Xuan W, Ando T, et al. Low-level laser therapy for closed-head traumatic brain injury in mice: effect of different wavelengths. Lasers Surg Med. 2012;44:218–226. doi:10.1002/lsm.2200322275301
  • Wong-Riley MT, Liang HL, Eells JT, et al. Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J Biol Chem. 2005;280:4761–4771. doi:10.1074/jbc.M40965020015557336
  • Karu TI. Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life. 2010;62:607–610. doi:10.1002/iub.35920681024
  • Lane N. Cell biology: power games. Nature. 2006;443:901–903. doi:10.1038/443901a17066004
  • Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng. 2012;40:516–533. doi:10.1007/s10439-011-0454-722045511
  • Hamblin MR, Ferraresi C, Huang YY, de Freitas LF, Carroll JD. Low-Level Light Therapy: Photobiomodulation. Bellingham (WA): SPIE Press; 2018.
  • Avci P, Gupta GK, Clark J, Wikonkal N, Hamblin MR. Low-level laser (light) therapy (LLLT) for treatment of hair loss. Lasers Surg Med. 2014;46:144–151. doi:10.1002/lsm.2217023970445
  • Darwin E, Arora H, Hirt PA, Wikramanayake TC, Jimenez JJ. A review of monochromatic light devices for the treatment of alopecia areata. Lasers Med Sci. 2018;33:435–444. doi:10.1007/s10103-017-2412-629250710
  • Darwin E, Heyes A, Hirt PA, Wikramanayake TC, Jimenez JJ. Low-level laser therapy for the treatment of androgenic alopecia: a review. Lasers Med Sci. 2018;33:425–434. doi:10.1007/s10103-017-2385-529270707
  • Delaney SW, Zhang P. Systematic review of low-level laser therapy for adult androgenic alopecia. J Cosmet Laser Ther. 2018;20:229–236. doi:10.1080/14764172.2017.140017029286826
  • Gupta AK, Daigle D. The use of low-level light therapy in the treatment of androgenetic alopecia and female pattern hair loss. J Dermatolog Treat. 2014;25:162–163. doi:10.3109/09546634.2013.83213423924031
  • Gupta AK, Lyons DC, Abramovits W. Low-level laser/light therapy for androgenetic alopecia. Skinmed. 2014;12:145–147.25134310
  • Semalty M, Semalty A, Joshi GP, Rawat MS. Hair growth and rejuvenation: an overview. J Dermatolog Treat. 2011;22:123–132. doi:10.3109/0954663090357857420536276
  • Statista.com; 2017 Available from: https://www.statista.com/statistics/489025/value-of-the-global-hair-loss-treatment-market/. Accessed August 16, 2019.
  • Gokalp H. Psychosocial aspects of hair loss In: Kutlubay Z, Serdaroglu S, editors. Hair and Scalp Disorders. London, UK: IntechOpen; 2016.
  • Paus R, Muller-Rover S, Van Der Veen C, et al. A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. J Invest Dermatol. 1999;113:523–532. doi:10.1046/j.1523-1747.1999.00740.x10504436
  • Burg D, Yamamoto M, Namekata M, Haklani J, Koike K, Halasz M. Promotion of anagen, increased hair density and reduction of hair fall in a clinical setting following identification of FGF5-inhibiting compounds via a novel 2-stage process. Clin Cosmet Investig Dermatol. 2017;10:71–85. doi:10.2147/CCID.S123401
  • Peus D, Pittelkow MR. Growth factors in hair organ development and the hair growth cycle. Dermatol Clin. 1996;14:559–572.9238316
  • Sano S, Kira M, Takagi S, Yoshikawa K, Takeda J, Itami S. Two distinct signaling pathways in hair cycle induction: Stat3-dependent and -independent pathways. Proc Natl Acad Sci U S A. 2000;97:13824–13829. doi:10.1073/pnas.24030309711087819
  • Rishikaysh P, Dev K, Diaz D, Qureshi WM, Filip S, Mokry J. Signaling involved in hair follicle morphogenesis and development. Int J Mol Sci. 2014;15:1647–1670. doi:10.3390/ijms1501164724451143
  • Andl T, Reddy ST, Gaddapara T, Millar SE. WNT signals are required for the initiation of hair follicle development. Dev Cell. 2002;2:643–653.12015971
  • Harris PJ, Takebe N, Ivy SP. Molecular conversations and the development of the hair follicle and basal cell carcinoma. Cancer Prev Res (Phila). 2010;3:1217–1221. doi:10.1158/1940-6207.CAPR-10-021020858758
  • Ellis JA, Sinclair R, Harrap SB. Androgenetic alopecia: pathogenesis and potential for therapy. Expert Rev Mol Med. 2002;4:1–11. doi:10.1017/S1462399402005112
  • Ellis JA, Stebbing M, Harrap SB. Polymorphism of the androgen receptor gene is associated with male pattern baldness. J Invest Dermatol. 2001;116:452–455. doi:10.1046/j.1523-1747.2001.01261.x11231320
  • Herskovitz I, Tosti A. Female pattern hair loss. Int J Endocrinol Metab. 2013;11:e9860. doi:10.5812/ijem24719635
  • Rossi A, Cantisani C, Melis L, Iorio A, Scali E, Calvieri S. Minoxidil use in dermatology, side effects and recent patents. Recent Pat Inflamm Allergy Drug Discov. 2012;6:130–136.22409453
  • Rittmaster RS. Finasteride. N Engl J Med. 1994;330:120–125. doi:10.1056/NEJM1994011333002087505051
  • Tobin DJ. Characterization of hair follicle antigens targeted by the anti-hair follicle immune response. J Investig Dermatol Symp Proc. 2003;8:176–181. doi:10.1046/j.1087-0024.2003.00805.x
  • Gilhar A, Paus R, Kalish RS. Lymphocytes, neuropeptides, and genes involved in alopecia areata. J Clin Invest. 2007;117:2019–2027. doi:10.1172/JCI3194217671634
  • Spano F, Donovan JC. Alopecia areata: part 1: pathogenesis, diagnosis, and prognosis. Can Fam Physician. 2015;61:751–755.26371097
  • Ito T. Advances in the management of alopecia areata. J Dermatol. 2012;39:11–17. doi:10.1111/j.1346-8138.2011.01476.x22211297
  • Borges HL, Linden R, Wang JY. DNA damage-induced cell death: lessons from the central nervous system. Cell Res. 2008;18:17–26. doi:10.1038/cr.2007.11018087290
  • Botchkarev VA, Komarova EA, Siebenhaar F, et al. p53 is essential for chemotherapy-induced hair loss. Cancer Res. 2000;60:5002–5006.11016618
  • Ross M, Fischer-Cartlidge E. Scalp cooling: a literature review of efficacy, safety, and tolerability for chemotherapy-induced alopecia. Clin J Oncol Nurs. 2017;21:226–233. doi:10.1188/17.CJON.226-23328315539
  • Nangia J, Wang T, Osborne C, et al. Effect of a scalp cooling device on alopecia in women undergoing chemotherapy for breast cancer: the SCALP randomized clinical trial. JAMA. 2017;317:596–605. doi:10.1001/jama.2016.2093928196254
  • Simsek T, Kocabas F, Zheng J, et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell. 2010;7:380–390. doi:10.1016/j.stem.2010.07.01120804973
  • Tatmatsu-Rocha JC, Tim CR, Avo L, et al. Mitochondrial dynamics (fission and fusion) and collagen production in a rat model of diabetic wound healing treated by photobiomodulation: comparison of 904nm laser and 850nm light-emitting diode (LED). J Photochem Photobiol B. 2018;187:41–47. doi:10.1016/j.jphotobiol.2018.07.03230098521
  • Chen AC, Arany PR, Huang YY, et al. Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One. 2011;6:e22453. doi:10.1371/journal.pone.002245321814580
  • Owusu-Ansah E, Banerjee U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature. 2009;461:537–541. doi:10.1038/nature0831319727075
  • Jabbari A, Cerise JE, Chen JC, et al. Molecular signatures define alopecia areata subtypes and transcriptional biomarkers. EBioMedicine. 2016;7:240–247. doi:10.1016/j.ebiom.2016.03.03627322477
  • Hamblin MR. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys. 2017;4:337–361. doi:10.3934/biophy.2017.3.33728748217
  • Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol. 2016;173:649–665. doi:10.1111/bph.1313925800044
  • Haschemi A, Kosma P, Gille L, et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab. 2012;15:813–826. doi:10.1016/j.cmet.2012.04.02322682222
  • Ushio A, Arakaki R, Yamada A, et al. Crucial roles of macrophages in the pathogenesis of autoimmune disease. World J Immunol. 2017;7:1–8. doi:10.5411/wji.v7.i1.1
  • Fernandes KP, Souza NH, Mesquita-Ferrari RA, et al. Photobiomodulation with 660-nm and 780-nm laser on activated J774 macrophage-like cells: effect on M1 inflammatory markers. J Photochem Photobiol B. 2015;153:344–351. doi:10.1016/j.jphotobiol.2015.10.01526519828
  • Yin K, Zhu R, Wang S, Zhao RC. Low-level laser effect on proliferation, migration, and antiapoptosis of mesenchymal stem cells. Stem Cells Dev. 2017;26:762–775. doi:10.1089/scd.2016.033228178868
  • Buscone S, Mardaryev AN, Raafs B, et al. A new path in defining light parameters for hair growth: discovery and modulation of photoreceptors in human hair follicle. Lasers Surg Med. 2017;49:705–718. doi:10.1002/lsm.2267328418107
  • Barikbin B, Khodamrdi Z, Kholoosi L, et al. Comparison of the effects of 665 nm low level diode laser hat versus and a combination of 665 nm and 808nm low level diode laser scanner of hair growth in androgenic alopecia. J Cosmet Laser Ther. 2017. doi:10.1080/14764172.2017.1326609
  • Joo HJ, Jeong KH, Kim JE, Kang H. Various wavelengths of light-emitting diode light regulate the proliferation of human dermal papilla cells and hair follicles via Wnt/beta-Catenin and the extracellular signal-regulated kinase pathways. Ann Dermatol. 2017;29:747–754. doi:10.5021/ad.2017.29.6.74729200764
  • Wikramanayake TC, Rodriguez R, Choudhary S, et al. Effects of the Lexington LaserComb on hair regrowth in the C3H/HeJ mouse model of alopecia areata. Lasers Med Sci. 2012;27:431–436. doi:10.1007/s10103-011-0953-721739260
  • Wikramanayake TC, Alvarez-Connelly E, Simon J, et al. Heat treatment increases the incidence of alopecia areata in the C3H/HeJ mouse model. Cell Stress Chaperones. 2010;15:985–991. doi:10.1007/s12192-010-0209-720582641
  • Wikramanayake TC, Villasante AC, Mauro LM, et al. Low-level laser treatment accelerated hair regrowth in a rat model of chemotherapy-induced alopecia (CIA). Lasers Med Sci. 2013;28:701–706. doi:10.1007/s10103-012-1139-722696077
  • Leavitt M, Charles G, Heyman E, Michaels D. HairMax LaserComb laser phototherapy device in the treatment of male androgenetic alopecia: a randomized, double-blind, sham device-controlled, multicentre trial. Clin Drug Investig. 2009;29:283–292. doi:10.2165/00044011-200929050-00001
  • Kim H, Choi JW, Kim JY, Shin JW, Lee SJ, Huh CH. Low-level light therapy for androgenetic alopecia: a 24-week, randomized, double-blind, sham device-controlled multicenter trial. Dermatol Surg. 2013;39:1177–1183. doi:10.1111/dsu.1220023551662
  • Lanzafame RJ, Blanche RR, Bodian AB, Chiacchierini RP, Fernandez-Obregon A, Kazmirek ER. The growth of human scalp hair mediated by visible red light laser and LED sources in males. Lasers Surg Med. 2013;45:487–495. doi:10.1002/lsm.2217324078483
  • Lanzafame RJ, Blanche RR, Chiacchierini RP, Kazmirek ER, Sklar JA. The growth of human scalp hair in females using visible red light laser and LED sources. Lasers Surg Med. 2014;46:601–607. doi:10.1002/lsm.2227725124964
  • Jimenez JJ, Wikramanayake TC, Bergfeld W, et al. Efficacy and safety of a low-level laser device in the treatment of male and female pattern hair loss: a multicenter, randomized, sham device-controlled, double-blind study. Am J Clin Dermatol. 2014;15:115–127. doi:10.1007/s40257-013-0060-624474647
  • Friedman S, Schnoor P. Novel approach to treating androgenetic alopecia in females with photobiomodulation (low-level laser therapy). Dermatol Surg. 2017;43:856–867. doi:10.1097/DSS.000000000000111428328705
  • Liu KH, Liu D, Chen YT, Chin SY. Comparative effectiveness of low-level laser therapy for adult androgenic alopecia: a system review and meta-analysis of randomized controlled trials. Lasers Med Sci. 2019;34:1063–1069. doi:10.1007/s10103-019-02723-630706177
  • Esmat SM, Hegazy RA, Gawdat HI, et al. Low level light-minoxidil 5% combination versus either therapeutic modality alone in management of female patterned hair loss: a randomized controlled study. Lasers Surg Med. 2017;49:835–843. doi:10.1002/lsm.2268428489273
  • Yamazaki M, Miura Y, Tsuboi R, Ogawa H. Linear polarized infrared irradiation using Super Lizer is an effective treatment for multiple-type alopecia areata. Int J Dermatol. 2003;42:738–740. doi:10.1046/j.1365-4362.2003.01968.x12956694
  • Ferneini EM, Beauvais D, Castiglione C, Ferneini MV. Platelet-rich plasma in androgenic alopecia: indications, technique, and potential benefits. J Oral Maxillofac Surg. 2017;75:788–795. doi:10.1016/j.joms.2016.10.04027918883
  • Ince B, Yildirim MEC, Dadaci M, Avunduk MC, Savaci N. Comparison of the efficacy of homologous and autologous Platelet-Rich Plasma (PRP) for treating androgenic alopecia. Aesthetic Plast Surg. 2018;42:297–303. doi:10.1007/s00266-017-1004-y29101437