457
Views
14
CrossRef citations to date
0
Altmetric
Review

Omics-Driven Biomarkers of Psoriasis: Recent Insights, Current Challenges, and Future Prospects

ORCID Icon, ORCID Icon & ORCID Icon
Pages 611-625 | Published online: 25 Aug 2020

References

  • Griffiths CE, Barker JN. Pathogenesis and clinical features of psoriasis. The Lancet. 2007;370:263–271. doi:10.1016/S0140-6736(07)61128-3
  • Jiang S, Hinchliffe TE, Wu T. Biomarkers of an autoimmune skin disease—psoriasis. Genom Proteom Bioinf. 2015;13:224–233. doi:10.1016/j.gpb.2015.04.002
  • Litman T. Personalized medicine—concepts, technologies, and applications in inflammatory skin diseases. Apmis. 2019;127:386–424.31124204
  • Michalek IM, Loring B, John SM. A systematic review of worldwide epidemiology of psoriasis. J Eur Acad Dermatol Venereol. 2017;31:205–212. doi:10.1111/jdv.1385427573025
  • Nestle FO, Kaplan DH, Barker J. Psoriasis. N Engl J Med. 2009;361:496–509. doi:10.1056/NEJMra080459519641206
  • Villanova F, Di Meglio P, Nestle FO. Biomarkers in psoriasis and psoriatic arthritis. Ann Rheum Dis. 2013;72:ii104–10. doi:10.1136/annrheumdis-2012-20303723532439
  • Gottlieb AB, Chao C, Dann F. Psoriasis comorbidities. J Dermatolog Treat. 2008;19:5–21. doi:10.1080/0954663070136476818273720
  • Wolf N, Quaranta M, Prescott NJ, et al. Psoriasis is associated with pleiotropic susceptibility loci identified in type II diabetes and Crohn disease. J Med Genet. 2008;45:114–116. doi:10.1136/jmg.2007.05359517993580
  • Grozdev I, Korman N, Tsankov N. Psoriasis as a systemic disease. Clin Dermatol. 2014;32:343–350. doi:10.1016/j.clindermatol.2013.11.00124767182
  • Singh S, Taylor C, Kornmehl H, et al. Psoriasis and suicidality: a systematic review and meta-analysis. J Am Acad Dermatol. 2017;77:425–440. doi:10.1016/j.jaad.2017.05.01928807109
  • Capon F. The genetic basis of psoriasis. Int J Mol Sci. 2017;18:2526. doi:10.3390/ijms18122526
  • Pollock RA, Abji F, Gladman DD. Epigenetics of psoriatic disease: a systematic review and critical appraisal. J Autoimmun. 2017;78:29–38. doi:10.1016/j.jaut.2016.12.00227965059
  • Maresca B, Cigliano L, Spagnuolo MS, et al. Differences between the glycosylation patterns of haptoglobin isolated from skin scales and plasma of psoriatic patients. PLoS One. 2012;7:12. doi:10.1371/journal.pone.0052040
  • Łuczaj W, Wroński A, Domingues P, et al. Lipidomic analysis reveals specific differences between fibroblast and keratinocyte ceramide profile of patients with psoriasis vulgaris. Molecules. 2020;25:630. doi:10.3390/molecules25030630
  • Oestreicher JL, Walters IB, Kikuchi T, et al. Molecular classification of psoriasis disease-associated genes through pharmacogenomic expression profiling. Pharmacogenomics J. 2001;1:272–287. doi:10.1038/sj.tpj.650006711911124
  • Krueger JG, Fretzin S, Suárez-Fariñas M, et al. IL-17A is essential for cell activation and inflammatory gene circuits in subjects with psoriasis. J Allergy Clin Immunol. 2012;130:145–154. doi:10.1016/j.jaci.2012.04.02422677045
  • Blauvelt A, Chiricozzi A. The immunologic role of IL-17 in psoriasis and psoriatic arthritis pathogenesis. Clin Rev Allergy Immunol. 2018;55:379–390. doi:10.1007/s12016-018-8702-330109481
  • Gao Y, Yi X, Ding Y. Combined transcriptomic analysis revealed AKR1B10 played an important role in psoriasis through the dysregulated lipid pathway and overproliferation of keratinocyte. Biomed Res Int. 2017;2017.
  • Gudjonsson JE, Ding J, Johnston A, et al. Assessment of the psoriatic transcriptome in a large sample: additional regulated genes and comparisons with in vitro models. J Invest Dermatol. 2010;130:1829–1840. doi:10.1038/jid.2010.3620220767
  • Keermann M, Kõks S, Reimann E, et al. Transcriptional landscape of psoriasis identifies the involvement of IL36 and IL36RN. BMC Genomics. 2015;16:322. doi:10.1186/s12864-015-1508-225897967
  • Mitsui H, Suárez-Fariñas M, Belkin DA, et al. Combined use of laser capture microdissection and cDNA microarray analysis identifies locally expressed disease-related genes in focal regions of psoriasis vulgaris skin lesions. J Invest Dermatol. 2012;132:1615–1626. doi:10.1038/jid.2012.3322402443
  • Suárez-Farinas M, Li K, Fuentes-Duculan J, et al. Expanding the psoriasis disease profile: interrogation of the skin and serum of patients with moderate-to-severe psoriasis. J Invest Dermatol. 2012;132:2552–2564. doi:10.1038/jid.2012.18422763790
  • Zhou X, Krueger JG, Kao MC, et al. Novel mechanisms of T-cell and dendritic cell activation revealed by profiling of psoriasis on the 63,100-element oligonucleotide array. Physiol Genomics. 2003;13:69–78. doi:10.1152/physiolgenomics.00157.200212644634
  • Kulski JK, Kenworthy W, Bellgard M, et al. Gene expression profiling of Japanese psoriatic skin reveals an increased activity in molecular stress and immune response signals. J Mol Med. 2005;83:964–975. doi:10.1007/s00109-005-0721-x16283139
  • Reischl J, Schwenke S, Beekman JM, et al. Increased expression of Wnt5a in psoriatic plaques. J Invest Dermatol. 2007;127:163–169. doi:10.1038/sj.jid.570048816858420
  • Yao Y, Richman L, Morehouse C, et al. Type I interferon: potential therapeutic target for psoriasis? PLoS One. 2008;3:7. doi:10.1371/journal.pone.0002737
  • Jabbari A, Suárez-Fariñas M, Dewell S, et al. Transcriptional profiling of psoriasis using RNA-seq reveals previously unidentified differentially expressed genes. J Invest Dermatol. 2012;132:246. doi:10.1038/jid.2011.26721850022
  • Bigler J, Rand HA, Kerkof K, et al. Cross-study homogeneity of psoriasis gene expression in skin across a large expression range. PLoS One. 2013;8:1. doi:10.1371/journal.pone.0052242
  • Wang L, Yu X, Wu C, et al. RNA sequencing-based longitudinal transcriptomic profiling gives novel insights into the disease mechanism of generalized pustular psoriasis. BMC Med Genomics. 2018;11:52. doi:10.1186/s12920-018-0369-329871627
  • Tian S, Krueger JG, Li K, et al. Meta-analysis derived (MAD) transcriptome of psoriasis defines the “core” pathogenesis of disease. PLoS One. 2012;7:9. doi:10.1371/journal.pone.0044274
  • Sevimoglu T, Arga KY. Computational systems biology of psoriasis: are we ready for the age of omics and systems biomarkers? OMICS. 2015;19:669–687. doi:10.1089/omi.2015.009626480058
  • Sevimoglu T, Turanli B, Bereketoglu C, et al. Systems biomarkers in psoriasis: integrative evaluation of computational and experimental data at transcript and protein levels. Gene. 2018;647:157–163. doi:10.1016/j.gene.2018.01.03329329927
  • Uzuncakmak TK, Karadag AS, Ozkanli S, et al. Alteration of tissue expression of human beta defensin-1 and human beta defensin-2 in psoriasis vulgaris following phototherapy. Biotechnic Histochem. 2020;95:243–248. doi:10.1080/10520295.2019.1673901
  • Sonkoly E, Bata-Csorgo Z, Pivarcsi A, et al. Identification and characterization of a novel, psoriasis susceptibility-related noncoding RNA gene, PRINS. J Biol Chem. 2005;280:24159–24167. doi:10.1074/jbc.M50170420015855153
  • Joyce CE, Zhou X, Xia J, et al. Deep sequencing of small RNAs from human skin reveals major alterations in the psoriasis miRNAome. Hum Mol Genet. 2011;20:4025–4040. doi:10.1093/hmg/ddr33121807764
  • Hou RX, Liu RF, Zhao XC, et al. Increased miR-155-5p expression in dermal mesenchymal stem cells of psoriatic patients: comparing the microRNA expression profile by microarray. Genet Mol Res. 2016;15:3. doi:10.4238/gmr.15038631
  • Lerman G, Avivi C, Mardoukh C, et al. MiRNA expression in psoriatic skin: reciprocal regulation of hsa-miR-99a and IGF-1R. PLoS One. 2011;6:6. doi:10.1371/journal.pone.0020916
  • Løvendorf MB, Zibert JR, Gyldenløve M, et al. MicroRNA-223 and miR-143 are important systemic biomarkers for disease activity in psoriasis. J Dermatol Sci. 2014;75:133–139. doi:10.1016/j.jdermsci.2014.05.00524909097
  • Xu Y, Ji Y, Lan X, et al. miR-203 contributes to IL-17-induced VEGF secretion by targeting SOCS3 in keratinocytes. Mol Med Rep. 2017;16:8989–8996. doi:10.3892/mmr.2017.775929039484
  • Quinn JJ, Zhang QC, Georgiev P, et al. Rapid evolutionary turnover underlies conserved lncRNA–genome interactions. Genes Dev. 2016;30(2):191–207. doi:10.1101/gad.272187.11526773003
  • Tang L, Liang Y, Xie H, et al. Long non‐coding RNAs in cutaneous biology and proliferative skin diseases: advances and perspectives. Cell Proliferat. 2020;53:e12698. doi:10.1111/cpr.12698
  • Tsoi LC, Iyer MK, Stuart PE, et al. Analysis of long non-coding RNAs highlights tissue-specific expression patterns and epigenetic profiles in normal and psoriatic skin. Genome Biol. 2015;16:24. doi:10.1186/s13059-014-0570-425723451
  • Gupta R, Ahn R, Lai K, et al. Landscape of long noncoding RNAs in psoriatic and healthy skin. J Invest Dermatol. 2016;136:603–609. doi:10.1016/j.jid.2015.12.00927015450
  • Ahn R, Gupta R, Lai K, Chopra N, Arron ST, Liao W. Network analysis of psoriasis reveals biological pathways and roles for coding and long non-coding RNAs. BMC Genomics. 2016;17(1):841. doi:10.1186/s12864-016-3188-y27793094
  • Capell BC, Seykora JT. Loss of methylation modification marks the presence of psoriasis. J Invest Derm. 2020;140:1127–1128. doi:10.1016/j.jid.2020.01.01132446330
  • Qiao M, Li R, Zhao X, et al. Up-regulated lncRNA-MSX2P1 promotes the growth of IL-22-stimulated keratinocytes by inhibiting miR-6731-5p and activating S100A7. Exp Cell Res. 2018;363:243–254. doi:10.1016/j.yexcr.2018.01.01429339075
  • Li H, Yang C, Zhang J, et al. Identification of potential key mRNAs and LncRNAs for psoriasis by bioinformatic analysis using weighted gene co-expression network analysis. Mol Genet Genomics. 2020;3:1–9.
  • Ruchusatsawat K, Wongpiyabovorn J, Protjaroen P, et al. Parakeratosis in skin is associated with loss of inhibitor of differentiation 4 via promoter methylation. Hum Pathol. 2011;42:1878–1887. doi:10.1016/j.humpath.2011.02.00521663940
  • Zhang K, Zhang R, Li X, et al. Promoter methylation status of p15 and p21 genes in HPP-CFCs of bone marrow of patients with psoriasis. Eur J Dermatol. 2009;19:141–146. doi:10.1684/ejd.2008.061819153068
  • Ngalamika O, Liang G, Zhao M, et al. Peripheral whole blood FOXP3 TSDR methylation: a potential marker in severity assessment of autoimmune diseases and chronic infections. Immunol Rev. 2015;44:126–136.
  • Chandra A, Ray A, Senapati S, et al. Genetic and epigenetic basis of psoriasis pathogenesis. Mol Immunol. 2015;64:313–323. doi:10.1016/j.molimm.2014.12.01425594889
  • Gu X, Boldrup L, Coates PJ, et al. Epigenetic regulation of OAS2 shows disease-specific DNA methylation profiles at individual CpG sites. Sci Rep. 2016;6:32579. doi:10.1038/srep3257927572959
  • Nobeyama Y, Umezawa Y, Nakagawa H. Less-invasive analysis of DNA methylation using psoriatic scales. J Dermatol Sci. 2011;83:70–73. doi:10.1016/j.jdermsci.2016.03.013
  • Zhang P, Zhao M, Liang G, et al. Whole-genome DNA methylation in skin lesions from patients with psoriasis vulgaris. J Autoimmun. 2013;41:17–24. doi:10.1016/j.jaut.2013.01.00123369618
  • Ovejero‐Benito MC, Reolid A, Sánchez‐Jiménez P, et al. Histone modifications associated with biological drug response in moderate‐to‐severe psoriasis. Exp Dermatol. 2018;27:1361–1371. doi:10.1111/exd.1379030260532
  • Zhang P, Su Y, Zhao M, Huang W, Lu Q. Abnormal histone modifications in PBMCs from patients with psoriasis vulgaris. Eur J Dermatol. 2011;21:552–557. doi:10.1684/ejd.2011.138321715244
  • Barr RM, Wong E, Mallet AI, et al. The analysis of arachidonic acid metabolites in normal, uninvolved and lesional psoriatic skin. Prostaglandins. 1984;28:57–65. doi:10.1016/0090-6980(84)90113-86435188
  • Armstrong AW, Wu J, Johnson MA, et al. Metabolomics in psoriatic disease: pilot study reveals metabolite differences in psoriasis and psoriatic arthritis. F1000Research. 2014;3.24627797
  • Kamleh MA, Snowden SG, Grapov D, et al. LC–MS metabolomics of psoriasis patients reveals disease severity-dependent increases in circulating amino acids that are ameliorated by anti-TNFα treatment. J Prot Res. 2015;14:557–566. doi:10.1021/pr500782g
  • Sitter B, Johnsson MK, Halgunset J, et al. Metabolic changes in psoriatic skin under topical corticosteroid treatment. BMC Dermatol. 2013;13:8. doi:10.1186/1471-5945-13-823945194
  • Ö B, Altınyazar HC, Baran H, Ünlü A. Serum homocysteine, asymmetric dimethyl arginine (ADMA) and other arginine–NO pathway metabolite levels in patients with psoriasis. Arch Dermatol Res. 2015;307:439–444. doi:10.1007/s00403-015-1553-325708188
  • Dutkiewicz EP, Hsieh KT, Wang YS, et al. Hydrogel micropatch and mass spectrometry–assisted screening for psoriasis-related skin metabolites. Clin Chem. 2016;62:1120–1128. doi:10.1373/clinchem.2016.25639627324733
  • Kang H, Li X, Zhou Q, et al. Exploration of candidate biomarkers for human psoriasis based on gas chromatography‐mass spectrometry serum metabolomics. Br J Dermatol. 2017;176:713–722. doi:10.1111/bjd.1500827564527
  • Alonso A, Julià A, Vinaixa M, et al. Urine metabolome profiling of immune-mediated inflammatory diseases. BMC Med. 2016;14:133. doi:10.1186/s12916-016-0681-827609333
  • Setkowicz M, Mastalerz L, Gielicz A, et al. Lack of association of ALOX 12 and ALOX 15B polymorphisms with psoriasis despite altered urinary excretion of 12 (S)‐hydroxyeicosatetraenoic acid. Br J Dermatol. 2015;172:337–344. doi:10.1111/bjd.1322524975552
  • Kailemia MJ, Park D, Lebrilla CB. Glycans and glycoproteins as specific biomarkers for cancer. Anal Bioanal Chem. 2017;409:395–410. doi:10.1007/s00216-016-9880-627590322
  • Walt D, Aoki-Kinoshita KF, Bendiak B, et al. Transforming Glycoscience: A Roadmap for the Future. Washington: National Academies Press; 2012.
  • Özdemir V, Arga KY, Aziz RK, et al. Digging deeper into precision/personalized medicine: cracking the sugar code, the third alphabet of life, and sociomateriality of the cell. OMICS. 2020;24:62–80. doi:10.1089/omi.2019.022032027574
  • Chen S, Arany I, Apisarnthanarax N, et al. Response of keratinocytes from normal and psoriatic epidermis to interferon-γ differs in the expression of zinc-α2-glycoprotein and cathepsin D. FASEB J. 2000;14:565–571. doi:10.1096/fasebj.14.3.56510698972
  • Allen M, Ishida-Yamamoto A, McGrath J, et al. Corneodesmosin expression in psoriasis vulgaris differs from normal skin and other inflammatory skin disorders. Lab Invest. 2001;81:969–976. doi:10.1038/labinvest.378030911454986
  • Matsumura Y, Hori T, Nishigori C, et al. Expression of CD134 and CD134 ligand in lesional and nonlesional psoriatic skin. Arch Dermatol Res. 2003;294:563–566. doi:10.1007/s00403-002-0363-612624783
  • Fleischmajer R, Kuroda K, Hazan R, et al. Basement membrane alterations in psoriasis are accompanied by epidermal overexpression of MMP-2 and its inhibitor TIMP-2. J Invest Dermatol. 2000;115:771–777. doi:10.1046/j.1523-1747.2000.00138.x11069613
  • Smetsers TF, van de Westerlo EM, Gerdy B, et al. Human single-chain antibodies reactive with native chondroitin sulfate detect chondroitin sulfate alterations in melanoma and psoriasis. J Invest Dermatol. 2004;122:707–716. doi:10.1111/j.0022-202X.2004.22316.x15086557
  • Borská L, Fiala Z, Krejsek J, et al. Selected immunological changes in patients with Goeckerman’s therapy TNF-alpha, sE-selectin, sP-selectin, sICAM-1 and IL-8. Physiol Res. 2001;55:6.
  • Benoit S, Toksoy A, Ahlmann M, et al. Elevated serum levels of calcium‐binding S100 proteins A8 and A9 reflect disease activity and abnormal differentiation of keratinocytes in psoriasis. Br J Dermatol. 2006;155:62–66. doi:10.1111/j.1365-2133.2006.07198.x16792753
  • Fuentes-Duculan J, Suárez-Fariñas M, Zaba LC, et al. A subpopulation of CD163-positive macrophages is classically activated in psoriasis. J Invest Dermatol. 2010;130:2412–2422. doi:10.1038/jid.2010.16520555352
  • Shi ZR, Tan GZ, Cao CX, et al. Decrease of galectin-3 in keratinocytes: a potential diagnostic marker and a critical contributor to the pathogenesis of psoriasis. J Autoimmun. 2018;89:30–40. doi:10.1016/j.jaut.2017.11.00229167025
  • Riggs KA, Joshi PH, Khera A, et al. Impaired HDL metabolism links GlycA, A novel inflammatory marker, with incident cardiovascular events. J Clin Med. 2019;8(12):2137. doi:10.3390/jcm8122137
  • Joshi AA, Lerman JB, Aberra TM, et al. GlycA is a novel biomarker of inflammation and subclinical cardiovascular disease in psoriasis. Circ Res. 2016;119:1242–1253. doi:10.1161/CIRCRESAHA.116.30963727654120
  • Turan T, Akyuz AR, Aykan AC, et al. Plasma endocan levels in patients with isolated coronary artery ectasia. Angiology. 2016;67:932–936. doi:10.1177/000331971663778926980772
  • Balta I, Balta S, Demirkol S, et al. Elevated serum levels of endocan in patients with psoriasis vulgaris: correlations with cardiovascular risk and activity of disease. Br J Dermatol. 2013;169:1066–1070. doi:10.1111/bjd.1252523889284
  • Nofal A, Al-Makhzangy I, Attwa E, et al. Vascular endothelial growth factor in psoriasis: an indicator of disease severity and control. J Eur Acad Dermatol Venereol. 2009;23:803. doi:10.1111/j.1468-3083.2009.03181.x19309427
  • Fujisawa A, Egawa K, Honda Y, et al. CEA (carcinoembryonic antigen) and CEACAM6 (CEA-related cell adhesion molecul 6) are expressed in psoriasis vulgaris. Open Dermatol J. 2013;7:1. doi:10.2174/1874372220130822005
  • Honma M, Minami-Hori M, Takahashi H, Iizuka H. Podoplanin expression in wound and hyperproliferative psoriatic epidermis: regulation by TGF-β and STAT-3 activating cytokines, IFN-γ, IL-6, and IL-22. J Dermatol Sci. 2012;65:134–140. doi:10.1016/j.jdermsci.2011.11.01122189341
  • Molteni S, Reali E. Biomarkers in the pathogenesis, diagnosis, and treatment of psoriasis. Psoriasis (Auckl). 2012;2:55.
  • Abu-Asab MS, Chaouchi M, Alesci S, et al. Biomarkers in the age of omics: time for a systems biology approach. OMICS. 2011;15:105–112. doi:10.1089/omi.2010.002321319991
  • Aquime Gonçalves AN, Lever M, Russo P, et al. Assessing the impact of sample heterogeneity on transcriptome analysis of human diseases using MDP webtool. Front Genet. 2019;10:971. doi:10.3389/fgene.2019.0097131708960
  • Gong T, Szustakowski JD. DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data. Bioinformatics. 2013;29:1083–1085. doi:10.1093/bioinformatics/btt09023428642
  • Lorincz AT. The promise and the problems of epigenetic biomarkers in cancer. Expert Opin Med Diagn. 2011;5:375–379. doi:10.1517/17530059.2011.59012922003365
  • Haab BB. Using lectins in biomarker research: addressing the limitations of sensitivity and availability. Proteom Clin Appl. 2012;6:346–350. doi:10.1002/prca.201200014
  • Yan J, Risacher SL, Shen L, Saykin AJ. Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data. Brief in Bioinform. 2018;19:1370–1381.
  • Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18:1–5. doi:10.1186/s13059-017-1215-128077169
  • Foulkes AC, Watson DS, Carr DF, et al. A framework for multi-omic prediction of treatment response to biologic therapy for psoriasis. J Invest Dermatol. 2019;139:100–107. doi:10.1016/j.jid.2018.04.04130030151
  • Rashmi R, Rao KS, Basavaraj KH. A comprehensive review of biomarkers in psoriasis. Clin Exp Dermatol. 2009;34:658–663. doi:10.1111/j.1365-2230.2009.03410.x19558584
  • Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18:41–58. doi:10.1038/nrd.2018.16830310233
  • Greis C, Meier Zürcher C, Djamei V, et al. Unmet digital health service needs in dermatology patients. J Dermatolog Treat. 2018;29:643–647. doi:10.1080/09546634.2018.144148829455570
  • Ruchusatsawat K, Wongpiyabovorn J, Shuangshoti S, et al. SHP-1 promoter 2 methylation in normal epithelial tissues and demethylation in psoriasis. J Mol Med. 2006;84:175–182. doi:10.1007/s00109-005-0020-616389548
  • Chen M, Chen ZQ, Cui PG, et al. The methylation pattern of p16INK4a gene promoter in psoriatic epidermis and its clinical significance. Br J Dermatol. 2008;158:987–993. doi:10.1111/j.1365-2133.2008.08505.x18373711
  • Hermann H, Runnel T, Aab A, et al. miR-146b probably assists miRNA-146a in the suppression of keratinocyte proliferation and inflammatory responses in psoriasis. J Invest Dermatol. 2017;13:1945–1954. doi:10.1016/j.jid.2017.05.012
  • Wei T, Folkersen L, Biskup E, et al. Ubiquitin‐specific peptidase 2 as a potential link between micro RNA‐125b and psoriasis. Br J Dermatol. 2017;176:723–731. doi:10.1111/bjd.1491627479112
  • Wang R, Zhao Z, Zheng L, et al. MicroRNA-520a suppresses the proliferation and mitosis of HaCaT cells by inactivating protein kinase B. Exp Ther Med. 2017;14:6207–6212. doi:10.3892/etm.2017.532329285178