127
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Relationship Between sCD163 and mCD163 and Their Implication in the Detection and Typing of Leprosy

ORCID Icon, , , ORCID Icon, , ORCID Icon, & show all
Pages 379-389 | Published online: 02 Jun 2020

References

  • de Sousa JR, Pagliari C, de Almeida DS, et al. Th9 cytokines response and its possible implications in the immunopathogenesis of leprosy. J Clin Pathol. 2018;70:521–527. doi:10.1136/jclinpath-2016-204110
  • WHO Expert Committee on Specifications for Pharmaceutical Preparations Geneva; New Delhi: World Health Organization; 2019
  • Talhari C, Talhari S, Penna GO. Clinical aspects of leprosy. Clin Dermatol. 2015;33:26–37. doi:10.1016/j.clindermatol.2014.07.00225432808
  • Modlin RLT. innate immune response in leprosy. Curr Opin Immunol. 2010;22:48–54. doi:10.1016/j.coi.2009.12.00120060279
  • Aarão TL, de Sousa JR, Botelho BS, Fuzii HT, Quaresma JA. Correlation between nerve growth factor and tissue expression of IL-17 in leprosy. Microb Pathog. 2016;90:64–68. doi:10.1016/j.micpath.2015.11.01926616164
  • Aarão TL, Esteves NR, Esteves N, et al. Relationship between growth factors and its implication in the pathogenesis of leprosy. Microb Pathog. 2014;77:66–72. doi:10.1016/j.micpath.2014.10.00525457797
  • Ritter M, Buechler C, Langmann T, Schmitz G. Genomic organization and chromosomal localization of the human CD163 (M130) gene: a member of the scavenger receptor cysteine-rich superfamily. Biochem Biophys Res Commun. 1999;260:466–474. doi:10.1006/bbrc.1999.086610403791
  • Hintz KA, Rassias AJ, Wardwell K, et al. Endotoxin induces rapid metalloproteinase-mediated shedding followed by up-regulation of the monocyte hemoglobin scavenger receptor CD163. J Leukoc Biol. 2002;72:711–717.12377940
  • Frings W, Dreier J, Sorg C. Only the soluble form of the scavenger receptor CD163 acts inhibitory on phorbol ester-activated T-lympho cytes, whereas membrane-bound protein has no effect. FEBS Lett. 2002;526:93–96. doi:10.1016/S0014-5793(02)03142-312208511
  • Philippidis P, Mason JC, Evans BJ, et al. Hemoglobin scavenger receptor CD163 mediates interleukin 10 release and heme oxygenase-1 synthesis: anti-inflammatory monocyte-macrophage responses in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery. Circ Res. 2004;94:119–126. doi:10.1161/01.RES.0000109414.78907.F914656926
  • Moestrup SK, Møller HJ. CD163: a regulated hemoglobin scavenger receptor with a role in the anti-inflammatory response. Ann Med. 2004;36:347–354. doi:10.1080/0785389041003317115478309
  • Fabriek BO, van Bruggen R, Deng DM, et al. The macrophage scavenger receptorCD163 functions as an innate immune sensor for bacteria. Blood. 2009;113:887–892. doi:10.1182/blood-2008-07-16706418849484
  • Li J, Liu CH, Xu DL, Gao B. Significance of CD163-positive macrophages in proliferative glomer- ulonephritis. Am J Med Sci. 2015;350:387–392. doi:10.1097/MAJ.000000000000056926379042
  • Stilund M, Gjelstrup MC, Petersen T, et al. Biomarkers of inflammation and axonal degeneration/damage in patients with newly diagnosed multiple sclerosis: contributions of the soluble CD163 CSF/serum ratio to a biomarker panel. PLoS One. 2015;10(4):e0119681. doi:10.1371/journal.pone.011968125860354
  • Ab-Rahman HA, Rahim H, AbuBakar S, Wong P-F. Macrophage activation syndrome-associ- ated markers in severe dengue. Int J Med Sci. 2016;13:179–186. doi:10.7150/ijms.1368026941578
  • Mendonca VR, Luz NF, Santos NJ, et al. Association between the haptoglobin and heme oxygenase 1 genetic profiles and soluble CD163 in susceptibility to and severity of human malaria. Infect Immun. 2012;80:1445–1454. doi:10.1128/IAI.05933-1122290142
  • Lastrucci C, Benard A, Balboa L, et al. Tuberculosis is associated with expansion of a motile, permissive and immunomodulatory CD16+ monocyte population via the IL-10/STAT3 axis. Cell Res. 2015;25(12):1333–1351. doi:10.1038/cr.2015.12326482950
  • Silva RL, Santos MB, Almeida PL, et al. sCD163 levels as a biomarker of disease severity in leprosy and visceral leishmaniasis. PLOS. 2017;11(3):e0005486.
  • Moura DF, de Mattos KA, Amadeu TP, et al. CD163 favors Mycobacterium leprae survival and persistence by promoting anti-inflammatory pathways in lepromatous macro- phages. Eur J Immunol. 2012;42:2925–2936. doi:10.1002/eji.20114219822851198
  • Moller HJ, Aerts H, Gronbaek H, et al. Soluble CD163: a marker molecule for monocyte/macrophage activity in disease. Scand J Clin Lab Invest Suppl. 2002;62(7):29–33. doi:10.1080/003655102762377466
  • Moller HJ, Peterslund NA, Graversen JH, Moestrup SK. Identification of the hemoglobin scavenger receptor/CD163 as a natural soluble protein in plasma. Blood. 2002;99(1):378–380. doi:10.1182/blood.V99.1.37811756196
  • Moller HJ, Petersen PH, Rejnmark L, Moestrup SK. Biological variation of soluble CD163. Scand J Clin Lab Invest. 2003;63(1):15–21. doi:10.1080/0036551031000043912729065
  • Moller HJ, de Fost M, Aerts H, Hollak C, Moestrup SK. Plasma level of the macrophage-derived soluble CD163 is increased and positively correlates with severity in Gaucher’s disease. Eur J Haematol. 2004;72:135–139. doi:10.1046/j.0902-4441.2003.00193.x14962251
  • Pessolani MC, Smith DR, Rivoire B, et al. Purification, characterization, gene sequence, and significance of a bacterioferritin from Mycobacterium leprae. J Exp Med. 1994;180:319–327. doi:10.1084/jem.180.1.3198006590
  • Gupta V, Gupta RK, Khare G, Salunke DM, Tyagi AK. Crystal structure of Bfr A from Mycobacterium tuberculosis: incorporation of selenomethionine results in cleavage and demetallation of haem. PLoS One. 2009;4:e8028. doi:10.1371/journal.pone.000802819946376
  • Barry CE 3rd, Boshoff H. Getting the iron out. Nat Chem Biol. 2005;1:127–128. doi:10.1038/nchembio0805-12716408014
  • Quadri LEN, Ratledge C. Iron metabolism in the tubercle bacillus and other mycobacteria In: Cole ST, Eisenach KD, McMurray DN, Jacobs WRJ, editors. Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, District of Columbia; 2005:341–357.
  • Zuwała-Jagiełło J. Haemoglobin scavenger receptor: function in relation to disease. Acta Biochim Pol. 2006;53(2):257–268. doi:10.18388/abp.2006_333816770444
  • Mocellin S, Panelli MC, Wang E, Nagorsen D, Marincola FM. The dual role of IL‐10. Trends Immunol. 2003;24:36–43. doi:10.1016/S1471-4906(02)00009-112495723
  • Sulahian TH, Pioli PA, Wardwell K, Guyre PM. Cross-linking of FcγR triggers shedding of the hemoglobin haptoglobin scavenger receptor CD163. J Leukoc Biol. 2004;76(1):271–277. doi:10.1189/jlb.100352315075364
  • Davis BH, Zarev PV. Human monocyte CD163 expression inversely correlates with soluble CD163 plasma levels. Cytometry B Clin Cytom. 2005;63:16–22. doi:10.1002/cyto.b.2003115624200
  • Halim NKD, Ogbeide E. Haematological alteration in Leprosy patients treated with dapsone. East Afr Med J. 2002;79(2):100–102. doi:10.4314/eamj.v79i2.891212380888
  • BINITHA MP, SARITHA SN, RIYAZ N, MARY V. Pancytopenia due to lepromatous involvement of the bone marrow: successful treatment with multidrug therapy. Lepr Rev. 2013;84:145–150.24171241
  • Majumder N. Socio-economic and health status of leprosy affected person: a study in Jharkhand. Indian J Lepr. 2015;87(3):145–154.26999986
  • Rodrigues TSV, Gomes LC, Cortela DCB, Silva EA, Silva CAL. Factors associated with leprosy in children contacts of notified adults in an endemic region of Midwest Brazil. J Pediatr (Rio J). 2019. doi:10.1016/j.jped.2019.04.004