98
Views
1
CrossRef citations to date
0
Altmetric
Original Research

CD103+ T Lymphocyte Count Linked to the Thickness of Invasion on Acral Melanoma without E-Cadherin Involvement

, ORCID Icon, &
Pages 1783-1790 | Published online: 24 Nov 2021

References

  • Chopra A, Sharma R, Rao UNM. Pathology of melanoma. Surg Clin North Am. 2020;100(1):43–59. doi:10.1016/j.suc.2019.09.004
  • Bastian BC. The molecular pathology of melanoma: an integrated taxonomy of melanocytic neoplasia. Annu Rev Pathol. 2014;9:239–271. doi:10.1146/annurev-pathol-012513-104658
  • Elder DE, Bastian BC, Cree IA, Massi D, Scolyer RA. Melanocytic tumour classification and the pathway concept of melanoma pathogenesis. In: Elder D, Massi D, Scolyer RA, Willemze R, editors. WHO Classification of Skin Tumours. 4th ed. Lyon: International Agency for Research on Cancer; 2018:66–71.
  • Patterson JW, Hosler GA, Weedon D. Lentigines, nevi, and melanomas. In: Patterson JW, editor. Weedon’s Skin Pathology. 4th ed. Philadelphia: Churchill Livingstone; 2016:893.
  • Teramoto Y, Keim U, Gesierich A, et al. Acral lentiginous melanoma: a skin cancer with unfavourable prognostic features. A study of the German central malignant melanoma registry (CMMR) in 2050 patients. Br J Dermatol. 2018;178(2):443–451. doi:10.1111/bjd.15803
  • Chang JM, Kosiorek HE, Dueck AC, et al. Stratifying SLN incidence in intermediate thickness melanoma patients. Am J Surg. 2018;215(4):699–706. doi:10.1016/j.amjsurg.2017.12.009
  • Jung JE, Anselmi Júnior R, Gennaro L, et al. Immunohistochemical assessment of E-cadherin, B-catenin, CEACAM-1 and PTEN: tumor progression markers in melanoma. Jornal Brasileiro de Patologia e Medicina Laboratorial. 2010;46:111–118. doi:10.1590/S1676-24442010000200007
  • Silye R, Karayiannakis AJ, Syrigos KN, et al. E-cadherin/catenin complex in benign and malignant melanocytic lesions. J Pathol. 1998;186(4):350–355. doi:10.1002/(SICI)1096-9896(199812)186:4<350::AID-PATH181>3.0.CO;2-K
  • Corgnac S, Boutet M, Kfoury M, Naltet C, Mami-Chouaib F. The emerging role of CD8+ Tissue Resident Memory T (TRM) cells in antitumor immunity: a unique functional contribution of the CD103 integrin. Front Immunol. 2018;15(9):1904. doi:10.3389/fimmu.2018.01904
  • Desai A, Ugorji R, Khachemoune A. Acral melanoma foot lesions. Part 1: epidemiology, aetiology, and molecular pathology. Clin Exp Dermatol. 2017;42(8):845–848. doi:10.1111/ced.13243
  • Usman HA, Hernowo BS, Tobing MDL, Hindritiani R. The major role of NF-κB in the depth of invasion on acral melanoma by decreasing CD8(+) T cells. J Pathol Transl Med. 2018;52(3):164–170. doi:10.4132/jptm.2018.04.04
  • Gipsyianti N, Aziz A, Hernowo BS, Usman HA. High expression of COX-2 associated with the depth of invasion on acral melanoma by increasing TGF-beta1. Clin Cosmet Investig Dermatol. 2021;14:209–216. doi:10.2147/CCID.S285564
  • Saberko S, Agus S, Yenny SW. Hubungan Ekspresi Ki-67 dan E-Cadherin dengan kedalaman invasi melanoma malignum berdasarkan clark level. Majalah Patologi Indonesia. 2019;28(3):22–28.
  • Krakhmal NV, Zavyalova MV, Denisov EV, Vtorushin SV, Perelmuter VM. Cancer invasion: patterns and mechanisms. Acta naturae. 2015;7(2):17–28.
  • Jiang WG, Sanders AJ, Katoh M, et al. Tissue invasion and metastasis: molecular, biological and clinical perspectives. Semin Cancer Biol. 2015;35(Suppl):S244–s75. doi:10.1016/j.semcancer.2015.03.008
  • Etemad-Moghadam S, Alaeddini M. Pattern of invasion in squamous cell carcinomas of the lower lip and oral cavity. J Oral Biol Craniofac Res. 2017;7(3):167–170. doi:10.1016/j.jobcr.2017.04.005
  • Alba-Castellón L, Olivera-Salguero R, Mestre-Farrera A, et al. Snail1-dependent activation of cancer-associated fibroblast controls epithelial tumor cell invasion and metastasis. Cancer Res. 2016;76(21):6205–6217. doi:10.1158/0008-5472.CAN-16-0176
  • Shields BD, Koss B, Taylor EM, et al. Loss of E-cadherin inhibits CD103 antitumor activity and reduces checkpoint blockade responsiveness in melanoma. Cancer Res. 2019;79(6):1113–1123. doi:10.1158/0008-5472.CAN-18-1722
  • Webb JR, Milne K, Watson P, Deleeuw RJ, Nelson BH. Tumor-infiltrating lymphocytes expressing the tissue resident memory marker CD103 are associated with increased survival in high-grade serous ovarian cancer. Clin Cancer Res. 2014;20(2):434–444. doi:10.1158/1078-0432.CCR-13-1877
  • Wang ZQ, Milne K, Derocher H, Webb JR, Nelson BH, Watson PH. CD103 and intratumoral immune response in breast cancer. Clin Cancer Res. 2016;22(24):6290–6297. doi:10.1158/1078-0432.CCR-16-0732
  • Chu Y, Liao J, Li J, et al. CD103(+) tumor-infiltrating lymphocytes predict favorable prognosis in patients with esophageal squamous cell carcinoma. J Cancer. 2019;10(21):5234–5243. doi:10.7150/jca.30354
  • Jang TJ. Progressive increase of regulatory T cells and decrease of CD8+ T cells and CD8+ T cells/regulatory T cells ratio during colorectal cancer development. Korean J Pathol. 2013;47(5):443–451. doi:10.4132/KoreanJPathol.2013.47.5.443
  • Chou JP, Ramirez CM, Ryba DM, Koduri MP, Effros RB. Prostaglandin E(2) Promotes features of replicative senescence in chronically activated human CD8+ T cells. PLoS One. 2014;9(6):e99432. doi:10.1371/journal.pone.0099432
  • Jayaraman P, Parikh F, Newton JM, et al. TGF-β1 programmed myeloid-derived suppressor cells (MDSC) acquire immune-stimulating and tumor killing activity capable of rejecting established tumors in combination with radiotherapy. Oncoimmunology. 2018;7(10):e1490853–e. doi:10.1080/2162402X.2018.1490853
  • Mahmoud F, Shields B, Makhoul I, et al. Immune surveillance in melanoma: from immune attack to melanoma escape and even counterattack. Cancer Biol Ther. 2017;18(7):451–469. doi:10.1080/15384047.2017.1323596
  • Edwards J, Wilmott JS, Madore J, et al. CD103+ tumor-resident CD8+ T cells are associated with improved survival in immunotherapy-naïve melanoma patients and expand significantly during anti-PD-1 treatment. Clin Cancer Res. 2018;24(13):3036–3045. doi:10.1158/1078-0432.CCR-17-2257