342
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Exploring the Potential Molecular Mechanism of Sijunzi Decoction in the Treatment of Non-Segmental Vitiligo Based on Network Pharmacology and Molecular Docking

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , & show all
Pages 821-836 | Received 05 Jan 2023, Accepted 22 Mar 2023, Published online: 01 Apr 2023

References

  • Ahmed Jan N, Masood S. Vitiligo. In: StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC; 2022.
  • Ezzedine K, Eleftheriadou V, Whitton M, van Geel N. Vitiligo. Lancet. 2015;386(9988):74–84. doi:10.1016/S0140-6736(14)60763-7
  • Speeckaert R, van Geel N. Vitiligo: an update on pathophysiology and treatment options. Am J Clin Dermatol. 2017;18(6):733–744. doi:10.1007/s40257-017-0298-5
  • Karagaiah P, Valle Y, Sigova J, et al. Emerging drugs for the treatment of vitiligo. Expert Opin Emerg Drugs. 2020;25(1):7–24. doi:10.1080/14728214.2020.1712358
  • Taneja N, Sreenivas V, Sahni K, Gupta V, Ramam M. Disease stability in segmental and non-segmental vitiligo. Indian Dermatol Online J. 2022;13(1):60–63. doi:10.4103/idoj.IDOJ_154_21
  • Wang T, Feng Y, Wang H. The mechanisms of sijunzi decoction in the treatment of chronic gastritis revealed by network pharmacology. Evid Based Complement Alter Med. 2020;2020:8850259. doi:10.1155/2020/8850259
  • Gao B, Peng Y, Peng C, Zhang Y, Li X. A comparison of characterization and its actions on immunocompetent cells of polysaccharides from sijunzi decoction. Evid Based Complement Alter Med. 2019;2019:9860381. doi:10.1155/2019/9860381
  • Xiong B, Qian H. Effects of Sijunzi decoction and Yupingfeng powder on expression of janus kinase-signal transducer and activator of transcription signal pathway in the brain of spleen-deficiency model rats. J Trad Chin Med. 2013;33(1):78–84. doi:10.1016/S0254-6272(13)60105-3
  • Guo L, Dong ND, Xiong AB, Liu ZY, Liu CR, He XC. 四君子汤加味防治烫伤后大鼠肠道损伤和细菌移位实验研究 [An experimental study on the prevention and treatment of postburn intestinal injury and bacterial translocation by Sijunzi decoction in scalded rats]. Zhonghua shao shang za zhi. 2003;19(2):89–93. Chinese.
  • Huang C, Zhu Z, Cao X, et al. A pectic polysaccharide from sijunzi decoction promotes the antioxidant defenses of SW480 cells. Molecules. 2017;22(8):1341. doi:10.3390/molecules22081341
  • Fang J, Wang C, Zheng J, Liu Y, Sailor G. Network pharmacology study of Yishen capsules in the treatment of diabetic nephropathy. PLoS One. 2022;17(9):e0273498. doi:10.1371/journal.pone.0273498
  • Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov. 2004;3(11):935–949. doi:10.1038/nrd1549
  • Liu S, Wang R, Lou Y, Liu J. Uncovering the mechanism of the effects of pien-tze-huang on liver cancer using network pharmacology and molecular docking. Evid Based Complement Alter Med. 2020;2020:4863015. doi:10.1155/2020/4863015
  • Hsin KY, Matsuoka Y, Asai Y, et al. systemsDock: a web server for network pharmacology-based prediction and analysis. Nucleic Acids Res. 2016;44(W1):W507–W513. doi:10.1093/nar/gkw335
  • Pinzi L, Rastelli G. Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci. 2019;20(18):4331. doi:10.3390/ijms20184331
  • Xu X, Zhang W, Huang C, et al. A novel chemometric method for the prediction of human oral bioavailability. Int J Mol Sci. 2012;13(6):6964–6982. doi:10.3390/ijms13066964
  • Ru J, Li P, Wang J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6:13. doi:10.1186/1758-2946-6-13
  • Dong Y, Zhao Q, Wang Y. Network pharmacology-based investigation of potential targets of astragalus membranaceous-angelica sinensis compound acting on diabetic nephropathy. Sci Rep. 2021;11(1):19496. doi:10.1038/s41598-021-98925-6
  • Zhao Y, Fu G, Wang J, Guo M, Yu G. Gene function prediction based on gene ontology hierarchy preserving hashing. Genomics. 2019;111(3):334–342. doi:10.1016/j.ygeno.2018.02.008
  • Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. doi:10.1093/nar/28.1.27
  • Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(Suppl4):S11. doi:10.1186/1752-0509-8-S4-S11
  • Šimundić AM. Measures of diagnostic accuracy: basic definitions. Ejifcc. 2009;19(4):203–211.
  • Charoentong P, Finotello F, Angelova M, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 2017;18(1):248–262. doi:10.1016/j.celrep.2016.12.019
  • Baugh EH, Lyskov S, Weitzner BD, Gray JJ, Uversky VN. Real-time PyMOL visualization for Rosetta and PyRosetta. PLoS One. 2011;6(8):e21931. doi:10.1371/journal.pone.0021931
  • El-Hachem N, Haibe-Kains B, Khalil A, Kobeissy FH, Nemer G. AutoDock and AutoDockTools for protein-ligand docking: beta-site amyloid precursor protein cleaving enzyme 1(BACE1) as a case study. Methods Mol Biol. 2017;1598:391–403.
  • Kartal D, Borlu M, Çınar SL, Kesikoğlu A, Utaş S. Thyroid abnormalities in paediatric patients with vitiligo: retrospective study. Postepy dermatologii i alergologii. 2016;33(3):232–234. doi:10.5114/ada.2016.60617
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–408. doi:10.1006/meth.2001.1262
  • Sul OJ, Ra SW. Quercetin prevents LPS-induced oxidative stress and inflammation by modulating NOX2/ROS/NF-kB in lung epithelial cells. Molecules. 2021;26(22):6949. doi:10.3390/molecules26226949
  • Chen T, Zhang X, Zhu G, et al. Quercetin inhibits TNF-α induced HUVECs apoptosis and inflammation via downregulating NF-kB and AP-1 signaling pathway in vitro. Medicine. 2020;99(38):e22241. doi:10.1097/MD.0000000000022241
  • Zhang Y, Xiao C, Zhu F. Effects of dietary quercetin on the innate immune response and resistance to white spot syndrome virus in Procambarusclarkii. Fish Shellfish Immunol. 2021;118:205–212. doi:10.1016/j.fsi.2021.09.012
  • Guan C, Xu W, Hong W, et al. Quercetin attenuates the effects of H2O2 on endoplasmic reticulum morphology and tyrosinase export from the endoplasmic reticulum in melanocytes. Mol Med Rep. 2015;11(6):4285–4290. doi:10.3892/mmr.2015.3242
  • Liu C, Liu H, Lu C, et al. Kaempferol attenuates imiquimod-induced psoriatic skin inflammation in a mouse model. Clin Exp Immunol. 2019;198(3):403–415. doi:10.1111/cei.13363
  • Heriniaina RM, Dong J, Kalavagunta PK, Wu HL, Yan DS, Shang J. Effects of six compounds with different chemical structures on melanogenesis. Chin J Nat Med. 2018;16(10):766–773. doi:10.1016/S1875-5364(18)30116-X
  • Yi L, Cui J, Wang W, et al. Formononetin attenuates airway inflammation and oxidative stress in murine allergic asthma. Front Pharmacol. 2020;11:533841. doi:10.3389/fphar.2020.533841
  • Liu G, Zhao W, Bai J, Cui J, Liang H, Lu B. Formononetin protects against concanavalin-A-induced autoimmune hepatitis in mice through its anti-apoptotic and anti-inflammatory properties. Biochem Cell Biol. 2021;99(2):231–240. doi:10.1139/bcb-2020-0197
  • Zeng W, Jin L, Zhang F, Zhang C, Liang W. Naringenin as a potential immunomodulator in therapeutics. Pharmacol Res. 2018;135:122–126. doi:10.1016/j.phrs.2018.08.002
  • Rodríguez-García C, Sánchez-Quesada C, Dietary JJG. Flavonoids as cancer chemopreventive agents: an updated review of human studies. Antioxidants. 2019;8(5):137. doi:10.3390/antiox8050137
  • Huang YC, Yang CH, Chiou YL. Citrus flavanone naringenin enhances melanogenesis through the activation of Wnt/β-catenin signalling in mouse melanoma cells. Phytomedicine. 2011;18(14):1244–1249. doi:10.1016/j.phymed.2011.06.028
  • Kim NH, Lee AY. Reduced aquaporin3 expression and survival of keratinocytes in the depigmented epidermis of vitiligo. J Invest Dermatol. 2010;130(9):2231–2239. doi:10.1038/jid.2010.99
  • Cui Y, Wang H, Wang D, et al. Network pharmacology analysis on the mechanism of Huangqi Sijunzi decoction in treating cancer-related fatigue. J Healthc Eng. 2021;2021:9780677. doi:10.1155/2021/9780677
  • Cui Y, Mi J, Feng Y, et al. 黄芪四君子汤治疗乳腺癌癌因性疲乏的疗效及机制:基于94例临床随机对照试验和网络药理学 [Huangqi Sijunzi decoction for treating cancer-related fatigue in breast cancer patients: a randomized trial and network pharmacology study]. Nan fang yi ke da xue xue bao. 2022;42(5):649–657. Chinese. doi:10.12122/j.issn.1673-4254.2022.05.04
  • Al Robaee AA, Alzolibani AA, Rasheed Z. Autoimmune response against tyrosinase induces depigmentation in C57BL/6 black mice. Autoimmunity. 2020;53(8):459–466. doi:10.1080/08916934.2020.1836489
  • Meng-Long Z, Xiao-Yan H, Ya-Lu C, et al. 基于网络药理学探讨四君子汤治疗溃疡性结肠炎的作用机制及实验验证 [Mechanism and experimental verification of Sijunzi Decoction in treatment of ulcerative colitis based on network pharmacology]. Zhongguo Zhong yao za zhi. 2020;45(22):5362–5372. Chinese. doi:10.19540/j.cnki.cjcmm.20200810.405
  • Kang HY, Chung E, Lee M, Cho Y, Kang WH. Expression and function of peroxisome proliferator-activated receptors in human melanocytes. Br J Dermatol. 2004;150(3):462–468. doi:10.1111/j.1365-2133.2004.05844.x
  • Wang JY, Chen H, Wang YY, et al. Network pharmacological mechanisms of Vernonia anthelmintica (L.) in the treatment of vitiligo: isorhamnetin induction of melanogenesis via up-regulation of melanin-biosynthetic genes. BMC Syst Biol. 2017;11(1):103. doi:10.1186/s12918-017-0486-1
  • Zhang W, Lv M, Shi Y, Mu Y, Yao Z, Yang Z. Network pharmacology-based study of the underlying mechanisms of Huangqi Sijunzi decoction for Alzheimer’s disease. Evid Based Complement Alter Med. 2021;2021(6480381):1–3.
  • Serravallo M, Jagdeo J, Glick SA, Siegel DM, Brody NI. Sirtuins in dermatology: applications for future research and therapeutics. Arch Dermatol Res. 2013;305(4):269–282. doi:10.1007/s00403-013-1320-2
  • Becatti M, Fiorillo C, Barygina V, et al. SIRT1 regulates MAPK pathways in vitiligo skin: insight into the molecular pathways of cell survival. J Cell Mol Med. 2014;18(3):514–529. doi:10.1111/jcmm.12206
  • Singh M, Mansuri MS, Kadam A, et al. Tumor necrosis factor-alpha affects melanocyte survival and melanin synthesis via multiple pathways in vitiligo. Cytokine. 2021;140:155432. doi:10.1016/j.cyto.2021.155432
  • Ahmed R, Sharif D, Jaf M, Amin DM. Effect of TNF-α −308G/A (rs1800629) promoter polymorphism on the serum level of TNF-α among Iraqi patients with generalized vitiligo. Clin Cosmet Investig Dermatol. 2020;13:825–835. doi:10.2147/CCID.S272970
  • Lu Y, Li L, Zhang JW, Zhong XQ, Wei JA, Han L. Total polysaccharides of the Sijunzi decoction attenuate tumor necrosis factor-α-induced damage to the barrier function of a Caco-2 cell monolayer via the nuclear factor-κB-myosin light chain kinase-myosin light chain pathway. World J Gastroenterol. 2018;24(26):2867–2877. doi:10.3748/wjg.v24.i26.2867
  • Chen L, Jin T, Ning C, Wang S, Wang L, Lin J. 加味四君子汤对H22肝癌小鼠的抑瘤作用和免疫功能的影响 [Anti-tumor and immune-modulating effect of Jiawei Sijunzi decoction in mice bearing hepatoma H22 tumor]. Nan fang yi ke da xue xue bao. 2019;39(2):241–248. Chinese. doi:10.12122/j.issn.1673-4254.2019.02.18
  • Dey-Rao R, Sinha AA. Vitiligo blood transcriptomics provides new insights into disease mechanisms and identifies potential novel therapeutic targets. BMC Genom. 2017;18(1):109. doi:10.1186/s12864-017-3510-3
  • Brägelmann J, Lorenz C, Borchmann S, Nishii K, Wegner J. MAPK-pathway inhibition mediates inflammatory reprogramming and sensitizes tumors to targeted activation of innate immunity sensor RIG-I. Nat Commun. 2021;12(1):5505. doi:10.1038/s41467-021-25728-8
  • Li XS, Tang XY, Su W, Li X. Vitexin protects melanocytes from oxidative stress via activating MAPK-Nrf2/ARE pathway. Immunopharmacol Immunotoxicol. 2020;42(6):594–603. doi:10.1080/08923973.2020.1835952
  • Mamat N, Lu XY, Kabas M, Aisa HA. Potential anti-vitiligo properties of cynarine extracted from Vernonia anthelmintica (L.) willd. Int J Mol Med. 2018;42(5):2665–2675.
  • Cheng SC, Huang WC, Pang J-H, Wu Y-H, Cheng C-Y. Quercetin Inhibits the production of IL-1β-induced inflammatory cytokines and chemokines in ARPE-19 cells via the MAPK and NF-κB signaling pathways. Int J Mol Sci. 2019;20(12):2957. doi:10.3390/ijms20122957
  • Meng LQ, Yang FY, Wang MS, et al. Quercetin protects against chronic prostatitis in rat model through NF-κB and MAPK signaling pathways. Prostate. 2018;78(11):790–800. doi:10.1002/pros.23536
  • Suchal K, Malik S, Gamad N, et al. Kaempferol attenuates myocardial ischemic injury via inhibition of MAPK signaling pathway in experimental model of myocardial ischemia-reperfusion injury. Oxid Med Cell Longev. 2016;2016:7580731. doi:10.1155/2016/7580731
  • Varfolomeev E, Vucic D. Intracellular regulation of TNF activity in health and disease. Cytokine. 2018;101:26–32. doi:10.1016/j.cyto.2016.08.035
  • Bhaskar S, Helen A. Quercetin modulates toll-like receptor-mediated protein kinase signaling pathways in oxLDL-challenged human PBMCs and regulates TLR-activated atherosclerotic inflammation in hypercholesterolemic rats. Mol Cell Biochem. 2016;423(1–2):53–65. doi:10.1007/s11010-016-2824-9
  • Park SE, Sapkota K, Kim S, Kim H, Kim SJ. Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells. Br J Pharmacol. 2011;164(3):1008–1025. doi:10.1111/j.1476-5381.2011.01389.x
  • Niu X, Wu C, Li M, et al. Naringenin is an inhibitor of T cell effector functions. J Nutr Biochem. 2018;58:71–79. doi:10.1016/j.jnutbio.2018.04.008