102
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Endoplasmic Reticulum Dysfunction: An Emerging Mechanism of Vitiligo Pathogenesis

ORCID Icon, , , , , , , , , & show all
Pages 1133-1144 | Received 24 Jan 2024, Accepted 25 Apr 2024, Published online: 16 May 2024

References

  • Ezzedine K, Eleftheriadou V, Whitton M, et al. Vitiligo. Lancet. 2015;386(9988):74–84. doi:10.1016/S0140-6736(14)60763-7
  • Ezzedine K, Lim HW, Suzuki T, et al. Revised classification/nomenclature of vitiligo and related issues: the Vitiligo Global Issues Consensus Conference. Pigment Cell Melanoma Res. 2012;25(3):E1–E13. doi:10.1111/j.1755-148X.2012.00997.x
  • Smith MP, Ly K, Thibodeaux Q, et al. Home phototherapy for patients with vitiligo: challenges and solutions. Clin Cosmet Investig Dermatol. 2019;12:451–459. doi:10.2147/CCID.S185798
  • Lee AY. Role of keratinocytes in the development of vitiligo. Ann Dermatol. 2012;24(2):115–125. doi:10.5021/ad.2012.24.2.115
  • Le Poole IC, Das PK, van den Wijngaard RM, et al. Review of the etiopathomechanism of vitiligo: a convergence theory. Exp Dermatol. 1993;2(4):145–153. doi:10.1111/j.1600-0625.1993.tb00023.x
  • Richmond JM, Frisoli ML, Harris JE. Innate immune mechanisms in vitiligo: danger from within. Curr Opin Immunol. 2013;25(6):676–682. doi:10.1016/j.coi.2013.10.010
  • Jian Z, Li K, Song P, et al. Impaired activation of the Nrf2-ARE signaling pathway undermines H2O2-induced oxidative stress response: a possible mechanism for melanocyte degeneration in vitiligo. J Invest Dermatol. 2014;134(8):2221–2230. doi:10.1038/jid.2014.152
  • Jian Z, Li K, Liu L, et al. Heme oxygenase-1 protects human melanocytes from H2O2-induced oxidative stress via the Nrf2-ARE pathway. J Invest Dermatol. 2011;131(7):1420–1427. doi:10.1038/jid.2011.56
  • Yi X, Guo W, Shi Q, et al. SIRT3-dependent mitochondrial dynamics remodeling contributes to oxidative stress-induced melanocyte degeneration in vitiligo. Theranostics. 2019;9(6):1614–1633. doi:10.7150/thno.30398
  • Xie H, Zhou F, Liu L, et al. Vitiligo: how do oxidative stress-induced autoantigens trigger autoimmunity? J Dermatol Sci. 2016;81(1):3–9. doi:10.1016/j.jdermsci.2015.09.003
  • Li S, Zhu G, Yang Y, et al. Oxidative stress drives CD8(+) T-cell skin trafficking in patients with vitiligo through CXCL16 upregulation by activating the unfolded protein response in keratinocytes. J Allergy Clin Immunol. 2017;140(1):177–189.e9. doi:10.1016/j.jaci.2016.10.013
  • Chang WL, Ko CH. The role of oxidative stress in vitiligo: an update on its pathogenesis and therapeutic implications. Cells. 2023;12(6):936. doi:10.3390/cells12060936
  • Yoshida H. ER stress and diseases. Febs j. 2007;274(3):630–658. doi:10.1111/j.1742-4658.2007.05639.x
  • Oakes SA, Papa FR. The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol. 2015;10(1):173–194. doi:10.1146/annurev-pathol-012513-104649
  • Zeeshan HM, Lee GH, Kim HR, et al. Endoplasmic Reticulum Stress and Associated ROS. Int J Mol Sci. 2016;17(3):327. doi:10.3390/ijms17030327
  • Wang M, Kaufman RJ. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature. 2016;529(7586):326–335. doi:10.1038/nature17041
  • Park K, Lee SE, Shin KO, et al. Insights into the role of endoplasmic reticulum stress in skin function and associated diseases. Febs j. 2019;286(2):413–425. doi:10.1111/febs.14739
  • Boissy RE, Beato KE, Nordlund JJ. Dilated rough endoplasmic reticulum and premature death in melanocytes cultured from the vitiligo mouse. Am J Pathol. 1991;138(6):1511–1525.
  • Tobin DJ, Swanson NN, Pittelkow MR, et al. Melanocytes are not absent in lesional skin of long duration vitiligo. J Pathol. 2000;191(4):407–416. doi:10.1002/1096-9896(2000)9999:9999<::AID-PATH659>3.0.CO;2-D
  • Porter KR, Claude A, Fullam EF. A Study Of Tissue Culture Cells By Electron Microscopy: Methods And Preliminary Observations. J Exp Med. 1945;81(3):233–246. doi:10.1084/jem.81.3.233
  • Schwarz DS, Blower MD. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci. 2016;73(1):79–94. doi:10.1007/s00018-015-2052-6
  • Kang X, Wang J, Yan L. Endoplasmic reticulum in oocytes: spatiotemporal distribution and function. J Assist Reprod Genet. 2023;40(6):1255–1263. doi:10.1007/s10815-023-02782-3
  • Lopez-Crisosto C, Pennanen C, Vasquez-Trincado C, et al. Sarcoplasmic reticulum-mitochondria communication in cardiovascular pathophysiology. Nat Rev Cardiol. 2017;14(6):342–360. doi:10.1038/nrcardio.2017.23
  • Kepp O, Galluzzi L. Preface: endoplasmic reticulum in health and disease. Int Rev Cell Mol Biol. 2020;350:xiii–xvii.
  • Rowland AA, Voeltz GK. Endoplasmic reticulum-mitochondria contacts: function of the junction. Nat Rev Mol Cell Biol. 2012;13(10):607–625. doi:10.1038/nrm3440
  • Friedman JR, Voeltz GK. The ER in 3D: a multifunctional dynamic membrane network. Trends Cell Biol. 2011;21(12):709–717. doi:10.1016/j.tcb.2011.07.004
  • Brandizzi F, Barlowe C. Organization of the ER-Golgi interface for membrane traffic control. Nat Rev Mol Cell Biol. 2013;14(6):382–392. doi:10.1038/nrm3588
  • Navid F, Colbert RA. Causes and consequences of endoplasmic reticulum stress in rheumatic disease. Nat Rev Rheumatol. 2017;13(1):25–40. doi:10.1038/nrrheum.2016.192
  • Scheuner D, Song B, McEwen E, et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell. 2001;7(6):1165–1176. doi:10.1016/S1097-2765(01)00265-9
  • Celli A, Crumrine D, Meyer JM, et al. Endoplasmic reticulum calcium regulates epidermal barrier response and desmosomal structure. J Invest Dermatol. 2016;136(9):1840–1847. doi:10.1016/j.jid.2016.05.100
  • Blackstone C. Cellular pathways of hereditary spastic paraplegia. Annu Rev Neurosci. 2012;35(1):25–47. doi:10.1146/annurev-neuro-062111-150400
  • Crapart CC, Scott ZC, Konno T, et al. Luminal transport through intact endoplasmic reticulum limits the magnitude of localized Ca2+ signals. Proc Natl Acad Sci U S A. 2024;121(13):e2312172121. doi:10.1073/pnas.2312172121
  • Bian Y, Yu H, Jin M, Gao X. Repigmentation by combined narrow‑band ultraviolet B/adipose‑derived stem cell transplantation in the mouse model: role of Nrf2/HO‑1‑mediated Ca2+ homeostasis. Mol Med Rep. 2022;25(1):6. doi:10.3892/mmr.2021.12522
  • Araki K, Nagata K. Protein folding and quality control in the ER. Cold Spring Harb Perspect Biol. 2012;4(8):a015438–a015438. doi:10.1101/cshperspect.a015438
  • Scriven P, Brown NJ, Pockley AG, et al. The unfolded protein response and cancer: a brighter future unfolding? J Mol Med. 2007;85(4):331–341. doi:10.1007/s00109-006-0150-5
  • Gardner BM, Walter P. Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science. 2011;333(6051):1891–1894. doi:10.1126/science.1209126
  • Williams B, Verchot J, Dickman MB. When supply does not meet demand-ER stress and plant programmed cell death. Front Plant Sci. 2014;5:211. doi:10.3389/fpls.2014.00211
  • Marciniak SJ, Chambers JE, Ron D. Pharmacological targeting of endoplasmic reticulum stress in disease. Nat Rev Drug Discov. 2022;21(2):115–140. doi:10.1038/s41573-021-00320-3
  • Zhang SX, Wang JJ, Starr CR, et al. The endoplasmic reticulum: homeostasis and crosstalk in retinal health and disease. Prog Retin Eye Res. 2024;98:101231. doi:10.1016/j.preteyeres.2023.101231
  • Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334(6059):1081–1096. doi:10.1126/science.1209038
  • Krebs J, Agellon LB, Michalak M. Ca(2+) homeostasis and endoplasmic reticulum (ER) stress: an integrated view of calcium signaling. Biochem Biophys Res Commun. 2015;460(1):114–121. doi:10.1016/j.bbrc.2015.02.004
  • Carreras-Sureda A, Pihán P, Hetz C. Calcium signaling at the endoplasmic reticulum: fine-tuning stress responses. Cell Calcium. 2018;70:24–31. doi:10.1016/j.ceca.2017.08.004
  • Mekahli D, Bultynck G, Parys JB, et al. Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harb Perspect Biol. 2011;3(6):a004317–a004317. doi:10.1101/cshperspect.a004317
  • Ando H, Ichihashi M, Hearing VJ. Role of the ubiquitin proteasome system in regulating skin pigmentation. Int J Mol Sci. 2009;10(10):4428–4434. doi:10.3390/ijms10104428
  • Athanasiou D, Aguila M, Bellingham J, et al. The molecular and cellular basis of rhodopsin retinitis pigmentosa reveals potential strategies for therapy. Prog Retin Eye Res. 2018;62:1–23. doi:10.1016/j.preteyeres.2017.10.002
  • Athanasiou D, Bevilacqua D, Aguila M, et al. The co-chaperone and reductase ERdj5 facilitates rod opsin biogenesis and quality control. Hum Mol Genet. 2014;23(24):6594–6606. doi:10.1093/hmg/ddu385
  • Athanasiou D, Kosmaoglou M, Kanuga N, et al. BiP prevents rod opsin aggregation. Mol Biol Cell. 2012;23(18):3522–3531. doi:10.1091/mbc.e12-02-0168
  • Ruppert M, Pyun J, Chalam KV, et al. Multimodal Imaging Characteristics of ADRP in a Family with p.Thr58Arg Substituted RHO Mutation. Case Rep Genet. 2020;2020:8860863. doi:10.1155/2020/8860863
  • Bilbao-Malavé V, González-Zamora J, de la Puente M, et al. Mitochondrial dysfunction and endoplasmic reticulum stress in age related macular degeneration, role in pathophysiology, and possible new therapeutic strategies. Antioxidants. 2021;10(8):1170. doi:10.3390/antiox10081170
  • Yang F, Yang L, Wataya-Kaneda M, et al. Uncoupling of ER/mitochondrial oxidative stress in mTORC1 hyperactivation-associated skin hypopigmentation. J Invest Dermatol. 2018;138(3):669–678. doi:10.1016/j.jid.2017.10.007
  • Hattori M, Ishikawa O, Oikawa D, et al. In-frame Val(216)-Ser(217) deletion of KIT in mild piebaldism causes aberrant secretion and SCF response. J Dermatol Sci. 2018;91(1):35–42. doi:10.1016/j.jdermsci.2018.03.012
  • Zhang Q, Cui T, Chang Y, et al. HO-1 regulates the function of Treg: association with the immune intolerance in vitiligo. J Cell Mol Med. 2018;22(9):4335–4343. doi:10.1111/jcmm.13723
  • Boissy RE, Liu YY, Medrano EE, et al. Structural aberration of the rough endoplasmic reticulum and melanosome compartmentalization in long-term cultures of melanocytes from vitiligo patients. J Invest Dermatol. 1991;97(3):395–404. doi:10.1111/1523-1747.ep12480976
  • Im S, Hann SK, Kim HI, et al. Biologic characteristics of cultured human vitiligo melanocytes. Int J Dermatol. 1994;33(8):556–562. doi:10.1111/j.1365-4362.1994.tb02895.x
  • Le Poole IC, Boissy RE, Sarangarajan R, et al. PIG3V, an immortalized human vitiligo melanocyte cell line, expresses dilated endoplasmic reticulum. Vitro Cell Dev Biol Anim. 2000;36(5):309–319. doi:10.1290/1071-2690(2000)036<0309:PAIHVM>2.0.CO;2
  • Jadeja SD, Vaishnav J, Bharti AH, et al. Elevated X-Box binding protein1 splicing and interleukin-17A expression are associated with active generalized vitiligo in Gujarat population. Front Immunol. 2021;12:801724. doi:10.3389/fimmu.2021.801724
  • Ren Y, Yang S, Xu S, et al. Genetic variation of promoter sequence modulates XBP1 expression and genetic risk for vitiligo. PLoS Genet. 2009;5(6):e1000523. doi:10.1371/journal.pgen.1000523
  • Sun X, Wang T, Huang B, et al. RIPK1 regulates the survival of human melanocytes upon endoplasmic reticulum stress. Exp Ther Med. 2020;19(5):3239–3246. doi:10.3892/etm.2020.8575
  • Ahn Y, Lee EJ, Luo E, et al. Particulate matter promotes melanin production through endoplasmic reticulum stress‒mediated IRE1α signaling. J Invest Dermatol. 2022;142(5):1425–1434.e6. doi:10.1016/j.jid.2021.08.444
  • Shi Q, Zhang W, Guo S, et al. Oxidative stress-induced overexpression of miR-25: the mechanism underlying the degeneration of melanocytes in vitiligo. Cell Death Differ. 2016;23(3):496–508. doi:10.1038/cdd.2015.117
  • Ortonne JP, Bose SK. Vitiligo: where do we stand? Pigment Cell Res. 1993;6(2):61–72. doi:10.1111/j.1600-0749.1993.tb00584.x
  • Elbaz Y, Schuldiner M. Staying in touch: the molecular era of organelle contact sites. Trends Biochem Sci. 2011;36(11):616–623. doi:10.1016/j.tibs.2011.08.004
  • Phillips MJ, Voeltz GK. Structure and function of ER membrane contact sites with other organelles. Nat Rev Mol Cell Biol. 2016;17(2):69–82. doi:10.1038/nrm.2015.8
  • Csordás G, Weaver D, Hajnóczky G. Endoplasmic reticulum-mitochondrial contactology: structure and signaling functions. Trends Cell Biol. 2018;28(7):523–540. doi:10.1016/j.tcb.2018.02.009
  • Aboufares El Alaoui A, Buhl E, Galizia S, et al. Increased interaction between endoplasmic reticulum and mitochondria following sleep deprivation. BMC Biol. 2023;21(1):1. doi:10.1186/s12915-022-01498-7
  • Wang Y, Li S, Li C. Perspectives of new advances in the pathogenesis of vitiligo: from oxidative stress to autoimmunity. Med Sci Monit. 2019;25:1017–1023. doi:10.12659/MSM.914898
  • Kaushik H, Kumar V, Parsad D. Mitochondria-Melanocyte cellular interactions: an emerging mechanism of vitiligo pathogenesis. J Eur Acad Dermatol Venereol. 2023;37(11):2196–2207. doi:10.1111/jdv.19019
  • Marks MS, Seabra MC. The melanosome: membrane dynamics in black and white. Nat Rev Mol Cell Biol. 2001;2(10):738–748. doi:10.1038/35096009
  • Daniele T, Schiaffino MV. Organelle biogenesis and interorganellar connections: better in contact than in isolation. Commun Integr Biol. 2014;7:e29587.
  • Sitaram A, Marks MS. Mechanisms of protein delivery to melanosomes in pigment cells. Physiology. 2012;27(2):85–99. doi:10.1152/physiol.00043.2011
  • Park HY, Kosmadaki M, Yaar M, et al. Cellular mechanisms regulating human melanogenesis. Cell Mol Life Sci. 2009;66(9):1493–1506. doi:10.1007/s00018-009-8703-8
  • Slominski A, Tobin DJ, Shibahara S, et al. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev. 2004;84(4):1155–1228. doi:10.1152/physrev.00044.2003
  • Watt B, van Niel G, Raposo G, et al. PMEL: a pigment cell-specific model for functional amyloid formation. Pigment Cell Melanoma Res. 2013;26(3):300–315. doi:10.1111/pcmr.12067
  • Simon JD, Peles D, Wakamatsu K, et al. Current challenges in understanding melanogenesis: bridging chemistry, biological control, morphology, and function. Pigment Cell Melanoma Res. 2009;22(5):563–579. doi:10.1111/j.1755-148X.2009.00610.x
  • Hoogduijn MJ, Smit NP, van der Laarse A, et al. Melanin has a role in Ca2+ homeostasis in human melanocytes. Pigment Cell Res. 2003;16(2):127–132. doi:10.1034/j.1600-0749.2003.00018.x
  • Patel S, Docampo R. Acidic calcium stores open for business: expanding the potential for intracellular Ca2+ signaling. Trends Cell Biol. 2010;20(5):277–286. doi:10.1016/j.tcb.2010.02.003
  • Burgoyne T, Patel S, Eden ER. Calcium signaling at ER membrane contact sites. Biochim Biophys Acta. 2015;1853(9):2012–2017. doi:10.1016/j.bbamcr.2015.01.022
  • Guan C, Lin F, Zhou M, et al. The role of VIT1/FBXO11 in the regulation of apoptosis and tyrosinase export from endoplasmic reticulum in cultured melanocytes. Int J Mol Med. 2010;26(1):57–65. doi:10.3892/ijmm_00000435
  • Francis E, Wang N, Parag H, et al. Tyrosinase maturation and oligomerization in the endoplasmic reticulum require a melanocyte-specific factor. J Biol Chem. 2003;278(28):25607–25617. doi:10.1074/jbc.M303411200
  • Garg AD, Kaczmarek A, Krysko O, et al. ER stress-induced inflammation: does it aid or impede disease progression? Trends Mol Med. 2012;18(10):589–598. doi:10.1016/j.molmed.2012.06.010
  • Verfaillie T, Garg AD, Agostinis P. Targeting ER stress induced apoptosis and inflammation in cancer. Cancer Lett. 2013;332(2):249–264. doi:10.1016/j.canlet.2010.07.016
  • Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295–a016295. doi:10.1101/cshperspect.a016295
  • Singh M, Kotnis A, Jadeja SD, et al. Cytokines: the yin and yang of vitiligo pathogenesis. Expert Rev Clin Immunol. 2019;15(2):177–188. doi:10.1080/1744666X.2019.1550358
  • Yu HS, Chang KL, Yu CL, et al. Alterations in IL-6, IL-8, GM-CSF, TNF-alpha, and IFN-gamma release by peripheral mononuclear cells in patients with active vitiligo. J Invest Dermatol. 1997;108(4):527–529. doi:10.1111/1523-1747.ep12289743
  • Toosi S, Orlow SJ, Manga P. Vitiligo-inducing phenols activate the unfolded protein response in melanocytes resulting in upregulation of IL6 and IL8. J Invest Dermatol. 2012;132(11):2601–2609. doi:10.1038/jid.2012.181
  • Mansuri MS, Singh M, Begum R. miRNA signatures and transcriptional regulation of their target genes in vitiligo. J Dermatol Sci. 2016;84(1):50–58. doi:10.1016/j.jdermsci.2016.07.003
  • Xue X, Piao JH, Nakajima A, et al. Tumor necrosis factor alpha (TNFalpha) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFalpha. J Biol Chem. 2005;280(40):33917–33925. doi:10.1074/jbc.M505818200
  • Seneschal J, Speeckaert R, Taïeb A, et al. Worldwide expert recommendations for the diagnosis and management of vitiligo: position statement from the international Vitiligo Task Force-Part 2: specific treatment recommendations. J Eur Acad Dermatol Venereol. 2023;37(11):2185–2195. doi:10.1111/jdv.19450
  • Pao HP, Liao WI, Tang SE, et al. Suppression of endoplasmic reticulum stress by 4-PBA protects against hyperoxia-induced acute lung injury via up-regulating claudin-4 expression. Front Immunol. 2021;12:674316. doi:10.3389/fimmu.2021.674316
  • Bhardwaj R, Bhardwaj A, Dhawan DK, et al. 4-PBA rescues hyperoxaluria induced nephrolithiasis by modulating urinary glycoproteins: cross talk between endoplasmic reticulum, calcium homeostasis and mitochondria. Life Sci. 2022;305:120786. doi:10.1016/j.lfs.2022.120786
  • Xing D, Zhou Q, Wang Y, et al. Effects of tauroursodeoxycholic acid and 4-phenylbutyric acid on selenium distribution in mice model with type 1 diabetes. Biol Trace Elem Res. 2023;201(3):1205–1213. doi:10.1007/s12011-022-03193-8
  • Shu S, Zhu J, Liu Z, et al. Endoplasmic reticulum stress is activated in post-ischemic kidneys to promote chronic kidney disease. EBioMedicine. 2018;37:269–280. doi:10.1016/j.ebiom.2018.10.006
  • Ni Q, Ye Z, Wang Y, et al. Gut microbial dysbiosis and plasma metabolic profile in individuals with vitiligo. Front Microbiol. 2020;11:592248. doi:10.3389/fmicb.2020.592248
  • Zalpoor H, Nabi-Afjadi M, Forghaniesfidvajani R, et al. Quercetin as a JAK-STAT inhibitor: a potential role in solid tumors and neurodegenerative diseases. Cell Mol Biol Lett. 2022;27(1):60. doi:10.1186/s11658-022-00355-3
  • Guan C, Xu W, Hong W, et al. Quercetin attenuates the effects of H2O2 on endoplasmic reticulum morphology and tyrosinase export from the endoplasmic reticulum in melanocytes. Mol Med Rep. 2015;11(6):4285–4290. doi:10.3892/mmr.2015.3242
  • Lu L, Wang S, Fu L, et al. Bilobalide protection of normal human melanocytes from hydrogen peroxide-induced oxidative damage via promotion of antioxidase expression and inhibition of endoplasmic reticulum stress. Clin Exp Dermatol. 2016;41(1):64–73. doi:10.1111/ced.12664
  • Ni YH, Deng HF, Zhou L, et al. Ginsenoside Rb1 ameliorated bavachin-induced renal fibrosis via suppressing Bip/eIF2α/CHOP signaling-mediated EMT. Front Pharmacol. 2022;13:872474. doi:10.3389/fphar.2022.872474
  • Nguyen S, Chuah SY, Fontas E, et al. Atorvastatin in combination with narrowband UV-B in adult patients with active vitiligo: a randomized clinical trial. JAMA Dermatol. 2018;154(6):725–726. doi:10.1001/jamadermatol.2017.6401
  • Bian Y, Yu H, Jin M, et al. Repigmentation by combined narrow‑band ultraviolet B/adipose‑derived stem cell transplantation in the mouse model: role of Nrf2/HO‑1‑mediated Ca(2+) homeostasis. Mol Med Rep. 2022;25:1.