106
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Autophagy Dysfunction: The Kernel of Hair Loss?

ORCID Icon & ORCID Icon
Pages 1165-1181 | Received 13 Feb 2024, Accepted 04 May 2024, Published online: 20 May 2024

References

  • Alessandrini A, Bruni F, Piraccini BM, et al. Common causes of hair loss – clinical manifestations, trichoscopy and therapy. J Eur Acad Dermatol Venereol. 2021;35(3):629–640. doi:10.1111/jdv.17079
  • Sadick N, Arruda S. Understanding Causes of Hair Loss in Women. Dermatologic Clin. 2021;39(3):371–374.
  • Jaller JA, MacQuhae F, Nichols AJ. Clinical Trials and Hair Loss. In: Alopecia. Elsevier; 2019:267–284.
  • Fuchs E. Scratching the surface of skin development. Nature. 2007;445(7130):834–842.
  • Martino PA, Heitman N, Rendl M. The dermal sheath: an emerging component of the hair follicle stem cell niche. Exp Dermatol. 2021;30(4):512–521.
  • Liu L-P, M-H L, Zheng Y-W. Hair Follicles as a Critical Model for Monitoring the Circadian Clock. Int J Mol Sci. 2023;24(3):2407.
  • Lin X, Zhu L, Morphogenesis HJ. Growth Cycle and Molecular Regulation of Hair Follicles. Front Cell Develop Biol. 2022;10.
  • Zhang P, Kling RE, Ravuri SK, et al. A review of adipocyte lineage cells and dermal papilla cells in hair follicle regeneration. J Tissue Eng. 2014;5:2041731414556850.
  • Paus R, Cotsarelis G. The Biology of Hair Follicles. F.H. Epstein. N Engl J Med. 1999;341(7):491–497.
  • Niu Y, Wang Y, Chen H, et al. Overview of the Circadian Clock in the Hair Follicle Cycle. Biomolecules. 2023;13(7):1068.
  • Bejaoui M, Oliva AK, Ke MS, et al. 3D Spheroid Human Dermal Papilla Cell as an Effective Model for the Screening of Hair Growth Promoting Compounds: examples of Minoxidil and 3,4,5-Tri-O-caffeoylquinic acid (TCQA). Cells. 2022;11(13):2093.
  • Devjani S, Ezemma O, Kelley KJ, et al. Androgenetic Alopecia: therapy Update. Drugs. 2023;83(8):701–715.
  • Redmond LC, Limbu S, Farjo B, et al. Male pattern hair loss: can developmental origins explain the pattern? Exp Dermatol. 2023;32(7):1174–1181.
  • Alavi SMK, Layegh P, Vahabi-Amlashi S, et al. Therapeutic effects of topical cetirizine in the treatment of female pattern hair loss: a randomized controlled noninferiority trial. Expert Rev Clin Pharmacol. 2023;1–7.
  • Li K, Sun Y, Liu S, et al. The AR/miR-221/IGF-1 pathway mediates the pathogenesis of androgenetic alopecia. Int J Bio Sci. 2023;19(11):3307–3323.
  • Liang Y, Tang X, Zhang X, et al. Adipose Mesenchymal Stromal Cell-Derived Exosomes Carrying MiR-122-5p Antagonize the Inhibitory Effect of Dihydrotestosterone on Hair Follicles by Targeting the TGF-β1/SMAD3 Signaling Pathway. Int J Mol Sci. 2023;24(6):5703.
  • Malkud S. Telogen Effluvium: a Review. J CLIN DIAGNOSTIC RES. 2015;9(9):WE01–WE03.
  • Zakhem GA, Goldberg JE, Motosko CC, et al. Sexual dysfunction in men taking systemic dermatologic medication: a systematic review. J Am Acad Dermatol. 2019;81(1):163–172.
  • Suchonwanit P, Thammarucha S, Leerunyakul K. Minoxidil and its use in hair disorders: a review. Drug Des Devel Ther. 2019;13:2777–2786.
  • Mir-Palomo S, Nácher A, Ofelia Vila-Busó MA, et al. Co-loading of finasteride and baicalin in phospholipid vesicles tailored for the treatment of hair disorders. Nanoscale. 2020;12(30):16143–16152.
  • Pratt CH, King LE, Messenger AG, et al. Alopecia areata. Nature Reviews Disease Primers. 2017;3(1):17011.
  • Ma Y, Sun Z, Y-M L, et al. Oxidative stress and alopecia areata. Front Med. 2023;10:1181572.
  • Mostaghimi A, Gao W, Ray M, et al. Trends in Prevalence and Incidence of Alopecia Areata, Alopecia Totalis, and Alopecia Universalis Among Adults and Children in a US Employer-Sponsored Insured Population. JAMA Dermatol. 2023;159(4):411–418.
  • Bertolini M, McElwee K, Gilhar A, et al. Hair follicle immune privilege and its collapse in alopecia areata. Exp Dermatol. 2020;29(8):703–725.
  • Macbeth AE, Holmes S, Harries M, et al. The associated burden of mental health conditions in alopecia areata: a population‐based study in UK primary care*. Br J Dermatol. 2022;187(1):73–81.
  • Messenger AG, McKillop J, Farrant P, et al. British Association of Dermatologists’ guidelines for the management of alopecia areata 2012. Br J Dermatol. 2012;166(5):916–926.
  • Zhou C, Li X, Wang C, et al. Alopecia Areata: an Update on Etiopathogenesis, Diagnosis, and Management. Clinical Reviews in Allergy & Immunology. 2021;61(3):403–423.
  • Done N, Bartolome L, Swallow E, et al. Real-World Treatment Patterns among Patients with Alopecia Areata in the USA: a Retrospective Claims Analysis. Acta Dermato-Venereologica. 2023;103:12445.
  • Wang L, Guo -L-L, Wang L-H, et al. Oxidative stress and substance P mediate psychological stress-induced autophagy and delay of hair growth in mice. Archives of Dermatological Res. 2015;307(2):171–181.
  • Yoshihara N, Ueno T, Takagi A, et al. The significant role of autophagy in the granular layer in normal skin differentiation and hair growth. Archives of Dermatological Res. 2015;307(2):159–169.
  • Cai B, Zheng Y, Yan J, et al. BMP2-mediated PTEN enhancement promotes differentiation of hair follicle stem cells by inducing autophagy. Exp. Cell. Res. 2019;385(2):111647.
  • Nicu C, Hardman JA, Pople J, et al. Do human dermal adipocytes switch from lipogenesis in anagen to lipophagy and lipolysis during catagen in the human hair cycle? Exp Dermatol. 2019;28(4):432–435.
  • Choi YK, Kang J-I, Hyun JW, et al. Myristoleic Acid Promotes Anagen Signaling by Autophagy through Activating Wnt/β-Catenin and ERK Pathways in Dermal Papilla Cells. Biomolecules Ther. 2021;29(2):211–219.
  • Kim HJ, Park J, Kim SK, et al. Autophagy: guardian of Skin Barrier. Biomedicines. 2022;10(8):1817.
  • Wang L, Klionsky DJ, Shen H-M. The emerging mechanisms and functions of microautophagy. Nat Rev Mol Cell Biol. 2023;24(3):186–203.
  • Kirchner P, Bourdenx M, Madrigal-Matute J, et al. Proteome-wide analysis of chaperone-mediated autophagy targeting motifs. PLoS biol. 2019;17(5):e3000301.
  • Kirat D, Alahwany AM, Arisha AH, et al. Role of Macroautophagy in Mammalian Male Reproductive Physiology. Cells. 2023;12(9):1322.
  • Galluzzi L, Green DR. 103Autophagy-Independent Functions of the Autophagy Machinery. Cell. 2019;177(7):1682–1699.
  • Yamamoto H, Zhang S, Mizushima N. Autophagy genes in biology and disease. Nat Rev Genet. 2023;24(6):382–400.
  • Kaushik S, Tasset I, Arias E, et al. Autophagy and the Hallmarks of Aging. Ageing Res Rev. 2021;72:101468.
  • Levine B, Kroemer G. Biological Functions of Autophagy Genes: a Disease Perspective. Cell. 2019;176(1–2):11–42.
  • Shu F, Xiao H, Q-N L, et al. Epigenetic and post-translational modifications in autophagy: biological functions and therapeutic targets. Signal Transduction Targeted Therapy. 2023;8(1):32.
  • Kim J, Kundu M, Viollet B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biol. 2011;13(2):132–141.
  • Velotti F, Bernini R. Hydroxytyrosol Interference with Inflammaging via Modulation of Inflammation and Autophagy. Nutrients. 2023;15(7):1774.
  • Russell RC, Yuan H-X, Guan K-L. Autophagy regulation by nutrient signaling. Cell Res. 2014;24(1):42–57.
  • Picard M, McEwen B, Epel ES, et al. An energetic view of stress: focus on mitochondria. Front Neuroendocrinol. 2018;49:72–85.
  • Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nature Cell Biol. 2018;20(7):745–754.
  • Brooks CD, Kodati B, Stankowska DL, et al. Role of mitophagy in ocular neurodegeneration. Front Neurosci. 2023;17.
  • Onishi M, Yamano K, Sato M, et al. Molecular mechanisms and physiological functions of mitophagy. EMBO J. 2021;40(3):e104705.
  • Lu Y, Li Z, Zhang S, et al. Cellular mitophagy: mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics. 2023;13(2):736–766.
  • Wang N, Zhu P, Huang R, et al. PINK1: the guard of mitochondria. Life Sci. 2020;259:118247.
  • Villa E, Marchetti S, Ricci J-E. No Parkin Zone: mitophagy without Parkin. Trends Cell Biol. 2018;28(11):882–895.
  • Mizushima N, Levine B. Autophagy in Human Diseases. D.L. Longo. N Eng J Med. 2020;383(16):1564–1576.
  • Park JS, Choe K, Lee HJ, et al. Neuroprotective effects of osmotin in Parkinson’s disease-associated pathology via the AdipoR1/MAPK/AMPK/mTOR signaling pathways. J Biomed Sci. 2023;30(1):66.
  • Singh J, Hussain Y, Meena A, et al. Molecular regulation of autophagy and suppression of protein kinases by aescin, a triterpenoid saponin impedes lung cancer cell proliferation and mobility. Int J Biol Macromol. 2023;126328.
  • Xu M, Ling F, Li J, et al. Oat beta-glucan reduces colitis by promoting autophagy flux in intestinal epithelial cells via EPHB6-TFEB axis. Front Pharmacol. 2023;14:1189229.
  • Keller CW, Adamopoulos IE, Lünemann JD. Autophagy pathways in autoimmune diseases. J Autoimmun. 2023;136:103030.
  • Xu S, Yang P, Qian K, et al. Modulating autophagic flux via ROS-responsive targeted micelles to restore neuronal proteostasis in Alzheimer’s disease. Bioact. Mater. 2022;11:300–316.
  • Li R, Dai Z, Liu X, et al. Interaction between dual specificity phosphatase-1 and cullin-1 attenuates alcohol-related liver disease by restoring p62-mediated mitophagy. Int J Bio Sci. 2023;19(6):1831–1845.
  • Z-J F, Wang Z-Y, Xu L, et al. HIF-1α-BNIP3-mediated mitophagy in tubular cells protects against renal ischemia/reperfusion injury. Redox Biol. 2020;36:101671.
  • Guo Y, Cui Y, Li Y, et al. Cytoplasmic YAP1‐mediated ESCRT‐III assembly promotes autophagic cell death and is ubiquitinated by NEDD4L in breast cancer. Cancer Commun. 2023;43(5):582–612.
  • Xie H, Zhou L, Liu F, et al. Autophagy induction regulates aquaporin 3‐mediated skin fibroblast ageing*. Br J Dermatol. 2022;186(2):318–333.
  • Umar SA, Shahid NH, Nazir LA, et al. Pharmacological Activation of Autophagy Restores Cellular Homeostasis in Ultraviolet-(B)-Induced Skin Photodamage. Front Oncol. 2021;11:726066.
  • Cristofani R, Piccolella M, Montagnani Marelli M, et al. HSPB8 counteracts tumor activity of BRAF- and NRAS-mutant melanoma cells by modulation of RAS-prenylation and autophagy. Cell Death Dis. 2022;13(11):973.
  • Ding Y, Chen Y, Yang X, et al. An integrative analysis of the lncRNA-miRNA-mRNA competitive endogenous RNA network reveals potential mechanisms in the murine hair follicle cycle. Front Genetics. 2022;13.
  • Chai M, Jiang M, Vergnes L, et al. Stimulation of Hair Growth by Small Molecules that Activate Autophagy. Cell Rep. 2019;27(12):3413–3421.e3.
  • Parodi C, Hardman JA, Allavena G, et al. Autophagy is essential for maintaining the growth of a human (mini-)organ: evidence from scalp hair follicle organ culture. PLoS biol. 2018;16(3):e2002864.
  • Van Hove L, Toniolo A, Ghiasloo M, et al. Autophagy critically controls skin inflammation and apoptosis-induced stem cell activation. Autophagy. 2015;19(11):2958–2971.
  • Du J, Liu W, Song Y, et al. Activating autophagy promotes skin regeneration induced by mechanical stretch during tissue expansion. Burns Trauma. 2024;12:tkad057.
  • Sukseree S, Karim N, Jaeger K, et al. Autophagy Controls the Protein Composition of Hair Shafts. J Invest Dermatol. 2023.
  • Sennett R, Garza L. Chapter 5 - Androgenetic Alopecia. In: Miteva M, editor. Alopecia. Elsevier; 2019:67–81.
  • Whiting DA. Possible mechanisms of miniaturization during androgenetic alopecia or pattern hair loss. J Am Acad Dermatol. 2001;45(3):S81–S86.
  • Liu W, Li K, Wang G, et al. Impairment of autophagy may be associated with follicular miniaturization in androgenetic alopecia by inducing premature catagen. J Dermatol. 2021;48(3):289–300.
  • Salwa A, Ferraresi A, Secomandi E, et al. High BECN1 Expression Negatively Correlates with BCL2 Expression and Predicts Better Prognosis in Diffuse Large B-Cell Lymphoma: role of Autophagy. Cells. 2023;12(15):1924.
  • Xiong J, Liu Z, Jia L, et al. Bioinspired engineering ADSC nanovesicles thermosensitive hydrogel enhance autophagy of dermal papilla cells for androgenetic alopecia treatment. Bioact. Mater. 2024;36:112–125.
  • Nam GH, K-J J, Park Y-S, et al. The peptide AC 2 isolated from Bacillus-treated Trapa japonica fruit extract rescues DHT (dihydrotestosterone)-treated human dermal papilla cells and mediates mTORC1 signaling for autophagy and apoptosis suppression. Sci Rep. 2019;9(1):16903.
  • Horii N, Hasegawa N, Fujie S, et al. Resistance exercise-induced increase in muscle 5α-dihydrotestosterone contributes to the activation of muscle Akt/mTOR/p70S6K- and Akt/AS160/GLUT4-signaling pathways in type 2 diabetic rats. FASEB J. 2020;34(8):11047–11057.
  • Jia T, Anandhan A, Massilamany C, et al. Association of Autophagy in the Cell Death Mediated by Dihydrotestosterone in Autoreactive T Cells Independent of Antigenic Stimulation. J Neuroimmune Pharmacol. 2015;10(4):620–634.
  • Mariño G, Niso-Santano M, Baehrecke EH, et al. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol. 2014;15(2):81–94.
  • Petukhova L, Duvic M, Hordinsky M, et al. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature. 2010;466(7302):113–117.
  • Petukhova L, Patel AV, Rigo RK, et al. Integrative analysis of rare copy number variants and gene expression data in alopecia areata implicates an aetiological role for autophagy. Exp Dermatol. 2020;29(3):243–253.
  • Pengo N, Agrotis A, Prak K, et al. A reversible phospho-switch mediated by ULK1 regulates the activity of autophagy protease ATG4B. Nat Commun. 2017;8(1):294.
  • Zhang A. A natural antisense transcript, BOKAS, regulates the pro-apoptotic activity of human Bok. Int j Oncol. 2009;34(4):67.
  • Kale J, Osterlund EJ, Andrews DW. BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ. 2018;25(1):65–80.
  • Xiong H, Sun L, Lian J, et al. Involvement of acetylation of ATG4B in controlling autophagy induction. Autophagy. 2023;19(3):1039–1041.
  • Pandey R, Bakay M, Hakonarson H. CLEC16A—An Emerging Master Regulator of Autoimmunity and Neurodegeneration. Int J Mol Sci. 2023;24(9):8224.
  • Xu W, Wan S, Xie B, et al. Novel potential therapeutic targets of alopecia areata. Front Immunol. 2023;14:1148359.
  • Hardman JA, Nicu C, Tai C, et al. Does dysfunctional autophagy contribute to immune privilege collapse and alopecia areata pathogenesis? J Dermatological Sci. 2020;100(1):75–78.
  • Phillips TG, Slomiany WP. Hair Loss: common Causes and Treatment. Am Family Phys. 2017;96(6):371–378.
  • Peters EMJ, Arck PC, Paus R. Hair growth inhibition by psychoemotional stress: a mouse model for neural mechanisms in hair growth control. Exp Dermatol. 2006;15(1):1–13.
  • Liang W, Zhao Y, Cai B, et al. Psychological stress induces hair regenerative disorders through corticotropin-releasing hormone-mediated autophagy inhibition. Biochem. Biophys. Res. Commun. 2024;699:149564.
  • Paus R, Handjiski B, Czarnetzki BM, et al. A Murine Model for Inducing and Manipulating Hair Follicle Regression (Catagen): effects of Dexamethasone and Cyclosporin A. J Invest Dermatol. 1994;103(2):143–147.
  • Choi S-J, Cho A-R, S-J J, et al. Effects of glucocorticoid on human dermal papilla cells in vitro. J Steroid Biochem Mol Biol. 2013;135:24–29.
  • Hua Q, Zhang Y, Li H, et al. Human umbilical cord blood-derived MSCs trans-differentiate into endometrial cells and regulate Th17/Treg balance through NF-κB signaling in rabbit intrauterine adhesions endometrium. Stem Cell Res Ther. 2022;13:301.
  • Stiner R, Alexander M, Liu G, et al. Transplantation of stem cells from umbilical cord blood as therapy for type I diabetes. Cell Tissue Res. 2019;378(2):155–162.
  • Jeon H-J, Yoon K-A, An ES, et al. Therapeutic Effects of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Combined with Cartilage Acellular Matrix Mediated Via Bone Morphogenic Protein 6 in a Rabbit Model of Articular Cruciate Ligament Transection. Stem Cell Rev Rep. 2020;16(3):596–611.
  • Ding Y, Liu C, Cai Y, et al. The efficiency of human umbilical cord mesenchymal stem cells as a salvage treatment for steroid-refractory acute graft-versus-host disease. Clin Exp Med. 2023.
  • Bak D, Lee E, Choi M, et al. Protective effects of human umbilical cord blood‑derived mesenchymal stem cells against dexamethasone‑induced apoptotic cell death in hair follicles. IntJ Mol Med. 2019.
  • Sheng X, Zhou Y, Wang H, et al. Establishment and characterization of a radiation‐induced dermatitis rat model. J Cell & Mol Med. 2019;23(5):3178–3189.
  • Schikowski T, Hüls A. Air Pollution and Skin Aging. Curr Environ Health Rep. 2020;7(1):58–64.
  • Zhang J, Yang Y, Fu L, et al. Short-term exposure of PM2.5 and PM10 increases the number of outpatients with eczema in Guangzhou: a time-series study. Front Public Health. 2023;10:930545.
  • D-A Y, Jang S, Ohn J, et al. Protective effect of autophagy in particulate matter-induced hair loss. J Dermatological Sci. 2022;107(3):173–176.
  • Park S-Y, Byun E, Lee J, et al. Air Pollution, Autophagy, and Skin Aging: impact of Particulate Matter (PM10) on Human Dermal Fibroblasts. Int J Mol Sci. 2018;19(9):2727.
  • Liu Y, Guerrero-Juarez CF, Xiao F, et al. Hedgehog signaling reprograms hair follicle niche fibroblasts to a hyper-activated state. Dev. Cell. 2022;57(14):1758–1775.e7.
  • S-T L, Suen W-J, Kao C-H, et al. 100Gasdermin A3–Mediated Cell Death Causes Niche Collapse and Precocious Activation of Hair Follicle Stem Cells. J Invest Dermatol. 2020;140(11):2117–2128.
  • Lunny DP, Weed E, Nolan PM, et al. Mutations in Gasdermin 3 Cause Aberrant Differentiation of the Hair Follicle and Sebaceous Gland. J Invest Dermatol. 2005;124(3):615–621.
  • Tamura M, Shiroishi T. GSDM family genes meet autophagy. Biochem. J. 2015;469(2):e5–e7.
  • Olivry T, Saridomichelakis M, Nuttall T, et al. Validation of the Canine Atopic Dermatitis Extent and Severity Index (CADESI)‐4, a simplified severity scale for assessing skin lesions of atopic dermatitis in dogs. Veterinary Dermatol. 2014;25(2):77.
  • Kim Y, Lee S-H, Song Y, et al. Induction of autophagy improves skin and hair conditions in dogs with underlying diseases. Front Veterinary Sci. 2023;10.
  • Lim J, J LC, Kim S, et al. Antiaging and antioxidant effects of topical autophagy activator: a randomized, placebo‐controlled, double‐blinded study. J Cosmet Dermatol. 2019;18(1):197–203.
  • Wikramanayake TC, Chéret J, Sevilla A, et al. Targeting mitochondria in dermatological therapy: beyond oxidative damage and skin aging. Exp Opinion Therapeutic Targets. 2022;26(3):233–259.
  • Lemasters JJ, Ramshesh VK, Lovelace GL, et al. Compartmentation of Mitochondrial and Oxidative Metabolism in Growing Hair Follicles: a Ring of Fire. J Investigative Dermatol. 2017;137(7):1434–1444.
  • Badolati N, Sommella E, Riccio G, et al. Annurca Apple Polyphenols Ignite Keratin Production in Hair Follicles by Inhibiting the Pentose Phosphate Pathway and Amino Acid Oxidation. Nutrients. 2018;10(10):1406.
  • Nicu C, Wikramanayake TC, Paus R. Clues that mitochondria are involved in the hair cycle clock: MPZL3 regulates entry into and progression of murine hair follicle cycling. Exp Dermatol. 2020;29(12):1243–1249.
  • Honda Igarashi M, Da Silva SG, Mercuri M, et al. Novel complex of cosmetic ingredients with promising action in preventing hair loss and follicular aging through mechanism involving enrichment of WNT /signaling, mitochondrial activity, and stem cells maintenance. J Cosmet Dermatol. 2021;20(7):2179–2189.
  • Hamanaka RB, Glasauer A, Hoover P, et al. Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle development. Sci Signaling. 2013;6(261):ra8.
  • Kim J, Shin JY, Choi Y-H, et al. Hair Growth Promoting Effect of Hottuynia cordata Extract in Cultured Human Hair Follicle Dermal Papilla Cells. Biol. Pharm. Bull. 2019;42(10):1665–1673.
  • Zhu H-L, Gao Y-H, Yang J-Q, et al. Serenoa repens extracts promote hair regeneration and repair of hair loss mouse models by activating TGF-β and mitochondrial signaling pathway. Eur Rev Med Pharmacol Sci. 2018;22(12):4000–4008.
  • Hintze M, Griesing S, Michels M, et al. Alopecia in Harlequin mutant mice is associated with reduced AIF protein levels and expression of retroviral elements. Mammalian Genome. 2021;32(1):12–29.
  • Liu J, Xu Y, Wu Q, et al. Sirtuin‑1 protects hair follicle stem cells from TNFα-mediated inflammatory stress via activating the MAPK-ERK-Mfn2 pathway. Life Sci. 2018;212:213–224.
  • Kloepper JE, Baris OR, Reuter K, et al. Mitochondrial Function in Murine Skin Epithelium Is Crucial for Hair Follicle Morphogenesis and Epithelial–Mesenchymal Interactions. J Invest Dermatol. 2015;135(3):679–689.
  • Lyu Y, Ge Y. Toward Elucidating Epigenetic and Metabolic Regulation of Stem Cell Lineage Plasticity in Skin Aging. Front Cell Develop Biol. 2022;10:903904.
  • Shin J-M, J-W K, Choi C-W, et al. Deficiency of Crif1 in hair follicle stem cells retards hair growth cycle in adult mice. PLoS One. 2020;15(4):e0232206.
  • Zhou H. Exendin-4 protects adipose-derived mesenchymal stem cells from apoptosis induced by hydrogen peroxide through the PI3K/Akt–Sfrp2 pathways. Free Radical Biol Medicine. 2014;77:363–375.
  • Son MJ, Jeong BR, Kwon Y, et al. Interference with the mitochondrial bioenergetics fuels reprogramming to pluripotency via facilitation of the glycolytic transition. Int J Biochem Cell Biol. 2013;45(11):2512–2518.
  • Flores A, Schell J, Krall AS, et al. Lactate dehydrogenase activity drives hair follicle stem cell activation. Nature Cell Biol. 2017;19(9):1017–1026.
  • Son MJ, Jeong JK, Kwon Y, et al. A novel and safe small molecule enhances hair follicle regeneration by facilitating metabolic reprogramming. Exp. Mol. Med. 2018;50(12):1–15.
  • Liu X, Flores AA, Situ L, et al. Development of Novel Mitochondrial Pyruvate Carrier Inhibitors to Treat Hair Loss. J Med Chem. 2021;64(4):2046–2063.
  • Tang Y, Luo B, Deng Z, et al. Mitochondrial aerobic respiration is activated during hair follicle stem cell differentiation, and its dysfunction retards hair regeneration. PeerJ. 2016;4:e1821.
  • Kim J, Kim SR, Choi Y-H, et al. Quercitrin Stimulates Hair Growth with Enhanced Expression of Growth Factors via Activation of MAPK/CREB Signaling Pathway. Molecules. 2020;25(17):4004.
  • Shin JY, Choi Y-H, Kim J, et al. Polygonum multiflorum extract support hair growth by elongating anagen phase and abrogating the effect of androgen in cultured human dermal papilla cells. BMC Complementary Med Therapies. 2020;20(1):1–12.
  • Li F, Liu H, Wu X, et al. Tetrathiomolybdate Decreases the Expression of Alkaline Phosphatase in Dermal Papilla Cells by Increasing Mitochondrial ROS Production. Int J Mol Sci. 2023;24(4):3123.
  • Sreedhar A, Aguilera-Aguirre L, Singh KK. Mitochondria in skin health, aging, and disease. Cell Death Dis. 2020;11(6):444.
  • Jung YH, Chae CW, Choi GE, et al. Cyanidin 3-O-arabinoside suppresses DHT-induced dermal papilla cell senescence by modulating p38-dependent ER-mitochondria contacts. J Biomed Sci. 2022;29(1):17.
  • Chew EGY, Lim TC, Leong MF, et al. Observations that suggest a contribution of altered dermal papilla mitochondrial function to androgenetic alopecia. Exp Dermatol. 2022;31(6):906–917.
  • Harries MJ, Jimenez F, Izeta A, et al. Lichen Planopilaris and Frontal Fibrosing Alopecia as Model Epithelial Stem Cell Diseases. Trends Mol Med. 2018;24(5):435–448.
  • Kang Y-H, Hyun J-E, Hwang C-Y. The number of mitochondrial DNA mutations as a genetic feature for hair cycle arrest (alopecia X) in Pomeranian dogs. Veterinary Dermatol. 2022;33(6):545–552.
  • Stout R, Birch-Machin M. Mitochondria’s Role in Skin Ageing. Biology. 2019;8(2):29.
  • O’Sullivan JDB, Nicu C, Picard M, et al. The biology of human hair greying. Biol. Rev. 2021;96(1):107–128.
  • Trifunovic A, Wredenberg A, Falkenberg M, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429(6990):417–423.
  • Singh B, Schoeb TR, Bajpai P, et al. Reversing wrinkled skin and hair loss in mice by restoring mitochondrial function. Cell Death Dis. 2018;9(7):735.
  • Cordisco S, Tinaburri L, Teson M, et al. Cockayne Syndrome Type A Protein Protects Primary Human Keratinocytes from Senescence. J Invest Dermatol. 2019;139(1):38–50.
  • Hussain M, Krishnamurthy S, Patel J, et al. Skin Abnormalities in Disorders with DNA Repair Defects, Premature Aging, and Mitochondrial Dysfunction. J Investigative Dermatol. 2021;141(4S):968–975.
  • Lu H, Fang EF, Sykora P, et al. Senescence induced by RECQL4 dysfunction contributes to Rothmund–Thomson syndrome features in mice. Cell Death Dis. 2014;5(5):e1226.
  • Larizza L, Roversi G, Volpi L. Rothmund-Thomson syndrome. Orphanet J Rare Diseases. 2010;5:2.
  • Nicholatos JW, Robinette TM, Tata SVP, et al. Cellular energetics and mitochondrial uncoupling in canine aging. GeroScience. 2019;41(2):229–242.
  • Wu H-C, Fan X, Hu C-H, et al. Comparison of mitochondrial transplantation by using a stamp-type multineedle injector and platelet-rich plasma therapy for hair aging in naturally aging mice. Biomed. Pharmacother. 2020;130:110520.
  • Yoshikawa S, Taniguchi K, Sawamura H, et al. Potential Diets to Improve Mitochondrial Activity in Amyotrophic Lateral Sclerosis. Diseases. 2022;10(4):117.
  • Peterle L, Sanfilippo S, Borgia F, et al. Alopecia Areata: a Review of the Role of Oxidative Stress, Possible Biomarkers, and Potential Novel Therapeutic Approaches. Antioxidants. 2023;12(1):135.
  • Shin J, Kim KM, Choi MS, et al. The crosstalk between PTEN ‐induced kinase 1‐mediated mitophagy and the inflammasome in the pathogenesis of alopecia areata. Exp Dermatol. 2023;exd.14844.
  • Gund R, Christiano AM. Impaired autophagy promotes hair loss in the C3H/HeJ mouse model of alopecia areata. Autophagy. 2023;19(1):296–305.
  • Fang EF, Hou Y, Lautrup S, et al. NAD+ augmentation restores mitophagy and limits accelerated aging in Werner syndrome. Nat Commun. 2019;10:5284.
  • Chen Q, Sun T, Wang J, et al. Hydroxytyrosol prevents dermal papilla cells inflammation under oxidative stress by inducing autophagy. J Biochemical Mol Toxicol. 2019;33(9):e22377.
  • Kang J-I, Choi YK, Han S-C, et al. Limonin, a Component of Immature Citrus Fruits, Activates Anagen Signaling in Dermal Papilla Cells. Nutrients. 2022;14(24):5358.
  • Kang J-I, Choi YK, Han S-C, et al. 5-Bromo-3,4-dihydroxybenzaldehyde Promotes Hair Growth through Activation of Wnt/β-Catenin and Autophagy Pathways and Inhibition of TGF-β Pathways in Dermal Papilla Cells. Molecules. 2022;27(7):2176.
  • Jeong G, Shin SH, Kim SN, et al. Ginsenoside Re prevents 3-methyladenine-induced catagen phase acceleration by regulating Wnt/β-catenin signaling in human dermal papilla cells. J Ginseng Res. 2023;47(3):440–447.
  • Sun S-Q, Shen -J-J, Wang Y-F, et al. Red organic light-emitting diodes based photobiomodulation therapy enabling prominent hair growth. Nano Res. 2023;16(5):7164–7170.
  • Upton JH, Hannen RF, Bahta AW, et al. Oxidative Stress–Associated Senescence in Dermal Papilla Cells of Men with Androgenetic Alopecia. J Invest Dermatol. 2015;135(5):1244–1252.
  • Yoon J, Sasaki K, Nishimura I, et al. Effects of Desert Olive Tree Pearls Containing High Hydroxytyrosol Concentrations on the Cognitive Functions of Middle-Aged and Older Adults. Nutrients. 2023;15(14):3234.
  • Chen Y, Lu Z, Feng J, et al. Novel recombinant R-spondin1 promotes hair regeneration by targeting the Wnt/β-catenin signaling pathway. Acta Biochim Biophys Sin. 2023.
  • Weisser H, Tunn S, Behnke B, et al. Effects of the Sabal serrulata extract IDS 89 and its subfractions on 5α-reductase activity in human benign prostatic hyperplasia. Prostate. 1996;28(5):300–306.
  • Zhou X, Xiang Y, Li D, et al. Limonin, a natural ERK2 agonist, protects against ischemic acute kidney injury. Int J Bio Sci. 2023;19(9):2860–2878.
  • Kang G-J, Han S-C, E-J Y, et al. The Inhibitory Effect of Premature Citrus unshiu Extract on Atopic Dermatitis In Vitro and In Vivo. Toxicol Res. 2011;27(3):173–180.
  • Tamaru E, Watanabe M, Nomura Y. Dietary immature Citrus unshiu alleviates UVB- induced photoaging by suppressing degradation of basement membrane in hairless mice. Heliyon. 2020;6(6):e04218.
  • Sun P, Wang Z, Li S, et al. Autophagy induces hair follicle stem cell activation and hair follicle regeneration by regulating glycolysis. Cell Biosci. 2024;14:6.
  • Shalaby RA, Qureshi MM, Khan Mohd A, et al. Photobiomodulation Therapy Restores Olfactory Function Impaired by Photothrombosis in Mouse Olfactory Bulb. Exp Neurol. 2023;367:114462.
  • Gobbo M, Rico V, Marta GN, et al. Photobiomodulation therapy for the prevention of acute radiation dermatitis: a systematic review and meta-analysis. Support Care Cancer. 2023;31(4):227.
  • de Souza Contatori CG, Silva CR, de Toledo Pereira S, et al. Responses of melanoma cells to photobiomodulation depend on cell pigmentation and light parameters. J Photochem Photobiol B Biol. 2022;235:112567.
  • Karsli-Uzunbas G, Guo JY, Price S, et al. Autophagy is Required for Glucose Homeostasis and Lung Tumor Maintenance. Cancer Discovery. 2014;4(8):914–927.
  • Galluzzi L, Bravo-San Pedro JM, Levine B, et al. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Drug Discovery. 2017;16(7):487–511.