281
Views
14
CrossRef citations to date
0
Altmetric
Review

Evaluating tofacitinib citrate in the treatment of moderate-to-severe active ulcerative colitis: design, development and positioning of therapy

, , &
Pages 179-191 | Published online: 02 May 2019

References

  • Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annual Review of Immunology. 2010;28:573–621. doi:10.1146/annurev-immunol-030409-101225
  • Sartor RB. Mechanisms of disease: pathogenesis of Crohn‘s disease and ulcerative colitis. Nat Clin Practice Gastroenterol Hepatol. 2006;3(7):390–407. doi:10.1038/ncpgasthep0528
  • Anderson CA, Boucher G, Lees CW, et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nature Genetics. 2011;43(3):246–252. doi:10.1038/ng.76421297633
  • Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annual Review of Immunology. 2010;28(1):573-621 
  • Hanauer SB, Feagan BG, Lichtenstein GR, et al. Maintenance infliximab for Crohn‘s disease: the ACCENT I randomised trial. Lancet (London, England). 2002;359(9317):1541–1549. doi:10.1016/S0140-6736(02)08512-4
  • Rutgeerts P, Sandborn WJ, Feagan BG, et al. Infliximab for induction and maintenance therapy for ulcerative colitis. New Engl J Med. 2005;353(23):2462–2476. doi:10.1056/NEJMoa05051616339095
  • Sandborn WJ, Feagan BG, Marano C, et al. Subcutaneous golimumab induces clinical response and remission in patients with moderate-to-severe ulcerative colitis. Gastroenterology. 2014;146(1):85–95;quiz e14-85. doi:10.1053/j.gastro.2013.05.048
  • Feagan BG, Rutgeerts P, Sands BE, et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. New Engl J Med. 2013;369(8):699–710. doi:10.1056/NEJMoa121573423964932
  • Holdam AS, Bager P, Dahlerup JF. Biological therapy increases the health-related quality of life in patients with inflammatory bowel disease in a clinical setting. Scand J Gastroenterology. 2016;51(6):706–711. doi:10.3109/00365521.2015.1136352
  • Ben-Horin S, Chowers Y. Review article: loss of response to anti-TNF treatments in Crohn‘s disease. Aliment Pharmacol Ther. 2011;33(9):987–995. doi:10.1111/j.1365-2036.2011.04612.x21366636
  • Roda G, Jharap B, Neeraj N, Colombel JF. Loss of response to anti-TNFs: definition, epidemiology, and management. Clin Transl Gastroenterol. 2016;7:e135. doi:10.1038/ctg.2015.6326741065
  • Wentworth BJ, Buerlein RCD, Tuskey AG, Overby MA, Smolkin ME, Behm BW. Nonadherence to biologic therapies in inflammatory bowel disease. Inflammatory Bowel Dis. 2018. doi:10.1093/ibd/izy102
  • Vavricka SR, Bentele N, Scharl M, et al. Systematic assessment of factors influencing preferences of Crohn‘s disease patients in selecting an anti-tumor necrosis factor agent (CHOOSE TNF TRIAL). Inflammatory Bowel Dis. 2012;18(8):1523–1530. doi:10.1002/ibd.21888
  • Sandborn WJ, Ghosh S, Panes J, et al. Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. N Engl J Med. 2012;367(7):616–624. doi:10.1056/NEJMoa111216822894574
  • Sandborn WJ, Su C, Sands BE, et al. Tofacitinib as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2017;376(18):1723–1736. doi:10.1056/NEJMoa160691028467869
  • O‘Shea JJ, Plenge R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity. 2012;36(4):542–550. doi:10.1016/j.immuni.2012.03.01422520847
  • Yamaoka K, Saharinen P, Pesu M, Holt VE, Silvennoinen O, O‘Shea JJ. The Janus kinases (Jaks). Genome Biology. 2004;5(12):253. doi:10.1186/gb-2004-5-12-25315575979
  • Coskun M, Salem M, Pedersen J, Nielsen OH. Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease. Pharmacol Res. 2013;76:1–8. doi:10.1016/j.phrs.2013.06.00723827161
  • Cacalano NA, Migone TS, Bazan F, et al. Autosomal SCID caused by a point mutation in the N-terminus of Jak3: mapping of the Jak3-receptor interaction domain. The EMBO J. 1999;18(6):1549–1558. doi:10.1093/emboj/18.6.154910075926
  • Hambleton S, Goodbourn S, Young DF, et al. STAT2 deficiency and susceptibility to viral illness in humans. Pro Nat Acad Sci USA. 2013;110(8):3053–3058. doi:10.1073/pnas.1220098110
  • Leonard WJ, O‘Shea JJ. Jaks and STATs: biological implications. Ann Rev Immunol. 1998;16:293–322. doi:10.1146/annurev.immunol.16.1.2939597132
  • Mogensen TH. STAT3 and the Hyper-IgE syndrome: clinical presentation, genetic origin, pathogenesis, novel findings and remaining uncertainties. Jak-stat. 2013;2(2):e23435. doi:10.4161/jkst.2343524058807
  • Cho JH, Gregersen PK. Genomics and the multifactorial nature of human autoimmune disease. N Engl J Med. 2011;365(17):1612–1623. doi:10.1056/NEJMra110003022029983
  • Goethel A, Croitoru K, Philpott DJ. The interplay between microbes and the immune response in inflammatory bowel disease. J Physiol. 2018;596(17):3869–3882. doi:10.1113/JP27539629806140
  • Fuss IJ, Neurath M, Boirivant M, et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn‘s disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol (Baltimore, Md: 1950). 1996;157(3):1261–1270.
  • Brand S. Crohn‘s disease: th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn‘s disease. Gut. 2009;58(8):1152–1167. doi:10.1136/gut.2008.16366719592695
  • Brand S, Beigel F, Olszak T, et al. IL-22 is increased in active Crohn‘s disease and promotes proinflammatory gene expression and intestinal epithelial cell migration. Am J Physiol Gastrointestinal Liver Physiol. 2006;290(4):G827–G838. doi:10.1152/ajpgi.00513.2005
  • Fujino S, Andoh A, Bamba S, et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut. 2003;52(1):65–70.12477762
  • Dambacher J, Beigel F, Zitzmann K, et al. The role of the novel Th17 cytokine IL-26 in intestinal inflammation. Gut. 2009;58(9):1207–1217. doi:10.1136/gut.2007.13011218483078
  • O‘Shea JJ, Murray PJ. Cytokine signaling modules in inflammatory responses. Immunity. 2008;28(4):477–487. doi:10.1016/j.immuni.2008.03.00218400190
  • Durant L, Watford WT, Ramos HL, et al. Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity. 2010;32(5):605–615. doi:10.1016/j.immuni.2010.05.00320493732
  • Hyams JS, Fitzgerald JE, Treem WR, Wyzga N, Kreutzer DL. Relationship of functional and antigenic interleukin 6 to disease activity in inflammatory bowel disease. Gastroenterology. 1993;104(5):1285–1292.7683293
  • Gross V, Andus T, Caesar I, Roth M, Scholmerich J. Evidence for continuous stimulation of interleukin-6 production in Crohn‘s disease. Gastroenterology. 1992;102(2):514–519.1370661
  • Parisinos CA, Serghiou S, Katsoulis M, et al. Variation in interleukin 6 receptor gene associates with risk of Crohn‘s disease and ulcerative colitis. Gastroenterology. 2018;155(2):303–306.e302. doi:10.1053/j.gastro.2018.05.02229775600
  • Ishizaki M, Akimoto T, Muromoto R, et al. Involvement of tyrosine kinase-2 in both the IL-12/Th1 and IL-23/Th17 axes in vivo. J Immunol (Baltimore, Md: 1950). 2011;187(1):181–189. doi:10.4049/jimmunol.1003244
  • Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75(2):263–274.8402911
  • Lees CW, Barrett JC, Parkes M, Satsangi J. New IBD genetics: common pathways with other diseases. Gut. 2011;60(12):1739–1753. doi:10.1136/gut.2009.19967921300624
  • Bollrath J, Phesse TJ, von Burstin VA, et al. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell. 2009;15(2):91–102. doi:10.1016/j.ccr.2009.01.00219185844
  • Alonzi T, Newton IP, Bryce PJ, et al. Induced somatic inactivation of STAT3 in mice triggers the development of a fulminant form of enterocolitis. Cytokine. 2004;26(2):45–56. doi:10.1016/j.cyto.2003.12.00215050604
  • Furumoto Y, Gadina M. The arrival of JAK inhibitors: advancing the treatment of immune and hematologic disorders. BioDrugs. 2013;27(5):431–438. doi:10.1007/s40259-013-0040-723743669
  • Hodge JA, Kawabata TT, Krishnaswami S, et al. The mechanism of action of tofacitinib – an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis. Clin Exp Rheumatol. 2016;34(2):318–328.26966791
  • Meyer DM, Jesson MI, Li X, et al. Anti-inflammatory activity and neutrophil reductions mediated by the JAK1/JAK3 inhibitor, CP-690,550, in rat adjuvant-induced arthritis. J Inflammation (London, England). 2010;7:41. doi:10.1186/1476-9255-7-59
  • Ghoreschi K, Jesson MI, Li X, et al. Modulation of innate and adaptive immune responses by tofacitinib (CP-690,550). J Immunol (Baltimore, Md: 1950). 2011;186(7):4234–4243. doi:10.4049/jimmunol.1003668
  • Dowty ME, Lin J, Ryder TF, et al. The pharmacokinetics, metabolism, and clearance mechanisms of tofacitinib, a janus kinase inhibitor, in humans. Drug Metab . 2014;42(4):759–773. doi:10.1124/dmd.113.054940
  • Lamba M, Wang R, Fletcher T, Alvey C, Kushner J, Stock TC. Extended-release once-daily formulation of tofacitinib: evaluation of pharmacokinetics compared with immediate-release tofacitinib and impact of food. J Clin Pharmacol. 2016;56(11):1362–1371. doi:10.1002/jcph.73426970526
  • Singh JA, Saag KG, Bridges SL Jr., et al. 2015 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis rheumatol (Hoboken, NJ). 2016;68(1):1–26.
  • Mease P, Hall S, FitzGerald O, et al. Tofacitinib or adalimumab versus placebo for psoriatic arthritis. N Engl J Med. 2017;377(16):1537–1550. doi:10.1056/NEJMoa161597529045212
  • Gladman D, Rigby W, Azevedo VF, et al. Tofacitinib for psoriatic arthritis in patients with an inadequate response to TNF inhibitors. N Engl J Med. 2017;377(16):1525–1536. doi:10.1056/NEJMoa161597729045207
  • van der Heijde D, Deodhar A, Wei JC, et al. Tofacitinib in patients with ankylosing spondylitis: a Phase II, 16-week, randomised, placebo-controlled, dose-ranging study. Ann Rheumatic Dis. 2017;76(8):1340–1347. doi:10.1136/annrheumdis-2016-210322
  • Shivanna CB, Shenoy C, Priya RA. Tofacitinib (Selective Janus Kinase Inhibitor 1 and 3): a promising therapy for the treatment of alopecia areata: a case report of six patients. Int J Trichol. 2018;10(3):103–107. doi:10.4103/ijt.ijt_21_18
  • Panes J, Sandborn WJ, Schreiber S, et al. Tofacitinib for induction and maintenance therapy of Crohn‘s disease: results of two Phase IIb randomised placebo-controlled trials. Gut. 2017;66(6):1049–1059. doi:10.1136/gutjnl-2016-31273528209624
  • Sandborn WJ, Ghosh S, Panes J, Vranic I, Wang W, Niezychowski W. A Phase 2 study of tofacitinib, an oral Janus kinase inhibitor, in patients with Crohn‘s disease. Clin Gastroenterol Hepatol. 2014;12(9):1485–1493.e1482. doi:10.1016/j.cgh.2014.01.02924480677
  • Vermeire S, Schreiber S, Petryka R, et al. Clinical remission in patients with moderate-to-severe Crohn‘s disease treated with filgotinib (the FITZROY study): results from a Phase 2, double-blind, randomised, placebo-controlled trial. Lancet (London, England). 2017;389(10066):266–275. doi:10.1016/S0140-6736(16)32537-5
  • Sandborn WJ, Feagan BG, Panes J, et al. Safety and efficacy of ABT-494 (Upadacitinib), an oral Jak1 inhibitor, as induction therapy in patients with Crohn‘s disease: results from celest. Gastroenterol. 2017;152(5):S1308–S1309. doi:10.1016/S0016-5085(17)34357-3
  • Marra F, Lo E, Kalashnikov V, Richardson K. Risk of herpes zoster in individuals on biologics, disease-modifying antirheumatic drugs, and/or corticosteroids for autoimmune diseases: a systematic review and meta-analysis. Open Forum Infectious Dis. 2016;3(4):ofw205. doi:10.1093/ofid/ofw205
  • Colombel J-F. Herpes zoster in patients receiving JAK inhibitors for ulcerative colitis: mechanism, epidemiology, management, and prevention. Inflammatory Bowel Dis. 2018;24(10):2173–2182. doi:10.1093/ibd/izy150
  • Cohen SB, Tanaka Y, Mariette X, et al. Long-term safety of tofacitinib for the treatment of rheumatoid arthritis up to 8.5 years: integrated analysis of data from the global clinical trials. Ann Rheumatic Dis. 2017;76(7):1253–1262. doi:10.1136/annrheumdis-2016-210457
  • Valenzuela F, Korman NJ, Bissonnette R, et al. Tofacitinib in patients with moderate-to-severe chronic plaque psoriasis: long-term safety and efficacy in an open-label extension study. Brit J Dermatol. 2018. doi:10.1111/bjd.16798
  • Charles-Schoeman C, Wicker P, Gonzalez-Gay MA, et al. Cardiovascular safety findings in patients with rheumatoid arthritis treated with tofacitinib, an oral Janus kinase inhibitor. Sem Arthritis Rheumatism. 2016;46(3):261–271. doi:10.1016/j.semarthrit.2016.05.014
  • Kume K, Amano K, Yamada S, et al. Tofacitinib improves atherosclerosis despite up-regulating serum cholesterol in patients with active rheumatoid arthritis: a cohort study. Rheumatol Int. 2017;37(12):2079–2085. doi:10.1007/s00296-017-3844-929030660
  • Wang Z, Wang S, Yun T, Wang C, Wang H. Tofacitinib ameliorates atherosclerosis and reduces foam cell formation in apoE deficient mice. Biochem Biophys Res Comm. 2017;490(2):194–201. doi:10.1016/j.bbrc.2017.06.02028601639
  • Wolk R, Armstrong EJ, Hansen PR, et al. Effect of tofacitinib on lipid levels and lipid-related parameters in patients with moderate to severe psoriasis. J Clin Lipidol. 2017;11(5):1243–1256. doi:10.1016/j.jacl.2017.06.01228751001
  • Perez-Baos S, Barrasa JI, Gratal P, et al. Tofacitinib restores the inhibition of reverse cholesterol transport induced by inflammation: understanding the lipid paradox associated with rheumatoid arthritis. Bri J Pharmacol. 2017;174(18):3018–3031. doi:10.1111/bph.13932
  • Rajman I, Eacho PI, Chowienczyk PJ, Ritter JM. LDL particle size: an important drug target? Bri J Pharmacol. 1999;48(2):125–133.
  • Kremer JM, Kivitz AJ, Simon-Campos JA, et al. Evaluation of the effect of tofacitinib on measured glomerular filtration rate in patients with active rheumatoid arthritis: results from a randomised controlled trial. Arthritis Res Ther. 2015;17:95. doi:10.1186/s13075-015-0612-725889308
  • Schulze-Koops H, Strand V, Nduaka C, et al. Analysis of haematological changes in tofacitinib-treated patients with rheumatoid arthritis across Phase 3 and long-term extension studies. Rheumatol (Oxford, England). 2017;56(1):46–57. doi:10.1093/rheumatology/kew329
  • Hanauer S, Panaccione R, Danese S, et al. Tofacitinib induction therapy reduces symptoms within 3 days for patients with ulcerative colitis. Clin Gastroenterol Hepatol. 2018;17(1):139–147.
  • Panes J, Bressler B, Colombel JF, et al. 905 – efficacy and safety of tofacitinib retreatment for ulcerative colitis after treatment interruption: results from the octave clinical trials. Gastroenterol. 2018;154(6):S–178. doi:10.1016/S0016-5085(18)31007-2
  • Singh S, Fumery M, Sandborn WJ, Murad MH. Systematic review with network meta-analysis: first- and second-line pharmacotherapy for moderate-severe ulcerative colitis. Aliment Pharmacol Ther. 2018;47(2):162–175. doi:10.1111/apt.1442229205406
  • Cohen RD, Yu AP, Wu EQ, Xie J, Mulani PM, Chao J. Systematic review: the costs of ulcerative colitis in Western countries. Aliment Pharmacol Ther. 2010;31(7):693–707. doi:10.1111/j.1365-2036.2010.04234.x20064142
  • Olivera P, Danese S, Peyrin-Biroulet L. Next generation of small molecules in inflammatory bowel disease. Gut. 2017;66(2):199–209. doi:10.1136/gutjnl-2016-31291227856614
  • Wu B, Wang Z, Zhang Q. Cost-effectiveness of different strategies for the treatment of moderate-to-severe ulcerative colitis Inflammatory Bowel Diseases. 2018;24(11):2291–2302.
  • Danese S, D‘Amico F, Bonovas S, Peyrin-Biroulet L. Positioning tofacitinib in the treatment algorithm of moderate to severe ulcerative colitis. Inflammatory Bowel Dis. 2018;24(10):2106–2112. doi:10.1093/ibd/izy076
  • Bonovas S, Lytras T, Nikolopoulos G, Peyrin-Biroulet L, Danese S. Systematic review with network meta-analysis: comparative assessment of tofacitinib and biological therapies for moderate-to-severe ulcerative colitis. Aliment Pharmacol Ther. 2018;47(4):454–465. doi:10.1111/apt.1444929205421