1,152
Views
74
CrossRef citations to date
0
Altmetric
Review

The Role of Selected Pro-Inflammatory Cytokines in Pathogenesis of Ischemic Stroke

ORCID Icon, , ORCID Icon, , ORCID Icon, , & ORCID Icon show all
Pages 469-484 | Published online: 23 Mar 2020

References

  • Feigin VL, Norrving B, Mensah GA. Global burden of stroke. Circ Res. 2017;20:439–448.
  • Grupa Ekspertów Sekcji Chorób Naczyniowych Polskiego Towarzystwa Neurologicznego. Postępowanie w udarze mózgu Wytyczne Grupy Ekspertów Sekcji Chorób Naczyniowych Polskiego Towarzystwa Neurologicznego. Neurol Neurochir Pol. 2012;46.
  • Kozera G, Sobolewski P, Serafin Z. Doświadczenie dwóch dekad leczenia trombolitycznego udaru niedokrwiennego mózgu: aktualne pytania i odpowiedzi. Gdansk: Wydawnictwo AsteriaMed; 2017.
  • Wein T, Lindsay MP, Côté R, et al. Canadian Stroke Best Practice Canadian stroke best practice recommendations: secondary prevention of stroke, sixth edition practice guidelines, update 2017. Int J Stroke. 2018;13:420–443. doi:10.1177/174749301774306229171361
  • Lackland DT, Roccella EJ, Deutsch AF, et al. Factors influencing the decline in stroke mortality: a statement from the American heart association/American stroke association. Stroke. 2014;45:315–353. doi:10.1161/01.str.0000437068.30550.cf24309587
  • Benjamin EJ, Virani SS, Callaway CW, et al. Heart disease and stroke statistics —2018 update: a report from the American Heart Association. Circ Res. 2018;137:67–492.
  • Zaremba J, Losy WJ, Selmaj K. Immunologiczne aspekty udaru mózgu, Neuroimmunologia Kliniczna Czelej (Lublin). 2007;14:261–279.
  • Lakhan SE, Kirchgessner A, Hofer M. Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med. 2009;7:97–107.19919699
  • Mizum A, Yenari MA. Anti-inflammatory targets for the treatment of reperfusion injury in stroke. Front Neurol. 2017;8:467–487. doi:10.3389/fneur.2017.0046728936196
  • Kim NS, Ko MM, Cha MH, et al. Age and sex dependent genetic effects of neuropeptide Y promoter polymorphism on susceptibility to ischemic stroke in Koreans. Clin Chim Acta. 2010;411:1243–1247. doi:10.1016/j.cca.2010.04.02620435026
  • Pera J. Polski Przegląd badań genetycznych i neuroobrazowych w diagnostyce udarów mózgu o rzadkiej etiologii. Pol Prz Neurol. 2017;13:1–9.
  • Bazina A, Sertić J, Mišmaš A, et al. PPARγ and IL-6 −174G>C gene variants in Croatian patients with ischemic stroke. Gene. 2015;560:200–204. doi:10.1016/j.gene.2015.02.00325659766
  • Gromadzka G. Genetyczne uwarunkowania udaru mózgu. Pol Prz Neurol. 2011;7:53–72.
  • Kim DH, Yoo SD, Chon J, et al. Interleukin-6 receptor polymorphisms contribute to the neurological status of korean patients with ischemic stroke. J Korean Med Sci. 2016;31:430–434. doi:10.3346/jkms.2016.31.3.43026955245
  • Powers WJ, Rabinstein AA, Ackerson TI, et al. American Heart Association Stroke Council: 2018 Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2018;49:46–110. doi:10.1161/STR.000000000000015829203686
  • Simats A, García-berrocoso T, Montaner J. Neuroinflammatory biomarkers: from stroke diagnosis and prognosis to therapy. BBA Mol Basis Dis. 2016;1862:411–424. doi:10.1016/j.bbadis.2015.10.025
  • Rose JS, Scheller J, Elson G, et al. Interleukin-6 biology is coordinated by membrane-bound and soluble receptors: role in inflammation and cancer. J Leukocyte Biol. 2006;80:227–236. doi:10.1189/jlb.110567416707558
  • Abayev M, Rodrigues JP, Srivastava G, et al. The solution structure of monomeric CCL5 in complex with a doubly sulfated N-terminal segment of CCR5. FEBS J. 2018;285:1988–2003. doi:10.1111/febs.1446029619777
  • Vidale S, Consolib A, Arnaboldia M, et al. Postischemic Inflammation in Acute Stroke. J Clin Neurol. 2017;13(1):1–9. doi:10.3988/jcn.2017.13.1.128079313
  • Lipton P. Ischemic cell death in brain neurons. Physiol Rev. 1999;79:1431–1568.10508238
  • Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron. 2010;67:181–198. doi:10.1016/j.neuron.2010.07.00220670828
  • Zhang QG, Xu YL, Li HC, et al. NMDA receptor/LVGCC-dependent expression and AMPA/KA receptor-dependent activation of c-Jun induced by cerebral ischemia in rat hippocampus. Neurosci Lett. 2006;398:268–273. doi:10.1016/j.neulet.2006.01.00516448753
  • Li XM, Yang JM, Hu DH, et al. Contribution of downregulation of L-type calcium currents to delayed neuronal death in rat hippocampus after global cerebral ischemia and reperfusion. J Neurosci. 2007;27:5249–5259. doi:10.1523/JNEUROSCI.0802-07.200717494711
  • Kahlert S, Zündorf G, Reiser G. Glutamate-mediated influx of extracellular Ca2+ is coupled with reactive oxygen species generation in cultured hippocampal neurons but not in astrocytes. J Neurosci Res. 2005;79:262–271. doi:10.1002/jnr.v79:1/215578732
  • Ramiro L, Simats A, Berrocoso TG, et al. Inflammatory molecules might become both biomarkers and therapeutic targets for stroke management. Ther Adv Neurol Diso. 2018;11:1–24.
  • Lucas SM, Rothwell NJ, Gibson RM. The role of inflammation in CNS injury and disease. Br J Pharmacol. 2006;147:232–240. doi:10.1038/sj.bjp.0706400
  • Bustamante A, Simats A, Vilar-bergua A, et al. Blood/brain biomarkers of inflammation after stroke and their association with outcome: from C-reactive protein to damage-associated molecular patterns. Neurotherapeutics. 2016;13:671–684. doi:10.1007/s13311-016-0470-227538777
  • Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med. 2011;17:796–808. doi:10.1038/nm.239921738161
  • Ozaki E, Campbell M, Doyle SL. Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. J Inflamm Res. 2015;8:15–27. doi:10.2147/JIR.S5125025653548
  • Hong P, Gu RN, Li FX, et al. NLRP3 inflammasome as a potential treatment in ischemic stroke concomitant with diabetes. J Neuroinflamm. 2019;16:121. doi:10.1186/s12974-019-1498-0
  • Yang Y, Wang H, Kouadir M, Song H, Shi F. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis. 2019;10:128–139. doi:10.1038/s41419-019-1413-830755589
  • ChS Y, Kim JJ, Kim TS, et al. Small heterodimer partner interacts with NLRP3 and negatively regulates activation of the NLRP3 inflammasome. Nat Commun. 2015;6:6115–6126. doi:10.1038/ncomms711525655831
  • Chamorro Á, Meisel A, Planas AM, et al. The immunology of acute stroke. Nat Rev Neurol. 2012;8:401–410. doi:10.1038/nrneurol.2012.9822664787
  • Amantea D, Micieli G, Tassorelli C, et al. Rational modulation of the innate immune system for neuroprotection in ischemic stroke. Front Neurosci. 2015;9:1–19. doi:10.3389/fnins.2015.0014725653585
  • Rayasam A, Hsu M, Kijak JA, et al. Immune responses in stroke: how the immune system contributes to damage and healing after stroke and how this knowledge could be translated to better cures? Immunology. 2018;154(3):363–376. doi:10.1111/imm.2018.154.issue-329494762
  • Rao KN, Brown MA. Mast cells: multifaceted immune cells with diverse roles in health and disease. Ann N Y Acad Sci. 2008;1143:83–104. doi:10.1196/nyas.2008.1143.issue-119076346
  • Felger JC, Abe T, Kaunzner UW, et al. Brain dendritic cells in ischemic stroke: time course, activation state, and origin. Brain Behav Immun. 2010;24(5):724–737. doi:10.1016/j.bbi.2009.11.00219914372
  • Wan YY. Multi-tasking of helper T cells. Immunology. 2010;130:166–171. doi:10.1111/imm.2010.130.issue-220557575
  • Shichita T, Sugiyama Y, Ooboshi H, et al. Pivotal role of cerebral interleukin-17-producing gamma delta T cells in the delayed phase of ischemic brain injury. Nat Med. 2009;15(8):946–950. doi:10.1038/nm.199919648929
  • Erta M, Quintana A, Hidalgo J. Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci. 2012;8:1254–1266. doi:10.7150/ijbs.467923136554
  • Matsumoto J, Dohgu S, Takata F, et al. TNF-α-sensitive brain pericytes activate microglia by releasing IL-6 through cooperation between IjB-NFjB and JAK-STAT3 pathways. Brain Res. 2018;1692:34–44. doi:10.1016/j.brainres.2018.04.02329702085
  • Gołąb J, Jakóbisiak M, Lasek W, et al. Cytokiny. Immunologia PWN Warszawa; 2017:108–151.
  • Shaafi S, Sharifipour E, Rahmanifar R, et al. Interleukin-6, a reliable prognostic factor for ischemic stroke. Iran J Neurol. 2014;13:70–76.25295149
  • Ormstad H, Aass HCD, Lund-sørensen N, et al. Serum levels of cytokines and C-reactive protein in acute ischemic stroke patients, and their relationship to stroke lateralization, type, and infarct volume. J Neurol. 2012;258:677–685. doi:10.1007/s00415-011-6006-0
  • Suzuki S, Tanaka K, Suzuki N. Ambivalent aspects of interleukin-6 in cerebral ischemia: inflammatory versus neurotrophic aspects. J Cereb Blood Flow Metab. 2009;29:464–479. doi:10.1038/jcbfm.2008.14119018268
  • Waje-andreassen U, Kråkenes J, Ulvestad E, et al. IL-6: an early marker for outcome in acute ischemic stroke. Acta Neurol Scand. 2005;111:360–365. doi:10.1111/ane.2005.111.issue-615876336
  • Sotgiu S, Zanda B, Marchetti B, et al. Inflammatory biomarkers in blood of patients with acute brain ischemia. Eur J Neurol. 2006;13:505–513. doi:10.1111/ene.2006.13.issue-516722977
  • Tuttolomondo A, Sciacca RD, Raimondo DD, et al. Plasma levels of inflammatory and thrombotic/fibrinolytic markers in acute ischemic strokes. Relationship with TOAST subtype, outcome and infarct site. J Neuroimmunol. 2009;215:84–89. doi:10.1016/j.jneuroim.2009.06.01919695716
  • Licata G, Tuttolomondo A, Raimondo DD, et al. Immuno-inflammatory activation in acute cardio-embolic strokes in comparison with other subtypes of ischaemic stroke. J Thromb Haemost. 2009;101:929–937. doi:10.1160/TH08-06-0375
  • Cojocaru IM, Cojocaru M, Tănăsescu R, et al. Expression of IL-6 activity in patients with acute ischemic stroke. Rom J Intern Med. 2009;47:393–396.21179922
  • Worthmann H, Tryc AB, Goldbecker A. The temporal profile of inflammatory markers and mediators in blood after acute ischemic stroke differs depending on stroke outcome. Cerebrovasc Dis. 2010;30:85–92. doi:10.1159/00031462420484906
  • Shenhar‐tsarfaty S, Ben E, Assayag I, et al. Interleukin‐6 as an early predictor for one‐year survival following an ischaemic stroke/transient ischaemic attack. Int J Stroke. 2010;5:16–20. doi:10.1111/j.1747-4949.2009.00396.x20088988
  • Nayak AR, Kashyap SR, Kabra D, et al. Time course of inflammatory cytokines in acute ischemic stroke patients and their relation to inter-alfa trypsin inhibitor heavy chain 4 and outcome. Ann Indian Acad Neurol. 2012;15:181–185. doi:10.4103/0972-2327.9970722919189
  • Puz P, Lasek-bal A, Kazibutowska Z. Evaluation of the serum concentration of selected inflammatory cytokines in patients  with carotid artery stenosis. Chir Pol. 2014;16:57–65.
  • Choudhary S, Chowdhur D, Mishra TK, et al. Temporal profile of serum levels of IL-6 in acute ischemic stroke and its relationship with stroke severity and outcome in indian population. Int J Intg Med Sci. 2018;5:555–560.
  • Boehme AK, McClure LA, Zhang Y, et al. Inflammatory markers and outcomes after lacunar stroke: levels of inflammatory markers in treatment of stroke study. Stroke. 2016;47:659–667. doi:10.1161/STROKEAHA.115.01216626888535
  • Libby P, Rocha VZ. All roads lead to IL-6: a central hub of cardiometabolic signaling. Int J Cardiol. 2018;15:213–215. doi:10.1016/j.ijcard.2018.02.062
  • Groot HE, Lawien AA, Horst ICC, et al. Plasma interleukin 6 levels are associated with cardiac function after ST-elevation myocardial infarction. Clin Res Cardiol. 2019;108:612–621. doi:10.1007/s00392-018-1387-z30367209
  • Bustamante A, Sobrino T, Giralt D, et al. Prognostic value of blood interleukin-6 in the prediction of functional outcome after stroke: a systematic review and meta-analysis. J Neuroimmunol. 2014;15:215–224.
  • Dobrucka-głowacka A, Sarecka-hujar B, Raczkiewicz D, et al. Interleukin-6 in cardiovascular disorders. Eur J Med Technol. 2018;3:23–30.
  • Martínez-sánchez P, Gutiérrez-fernández M, Fuentes B, et al. Biochemical and inflammatory biomarkers in ischemic stroke: translational study between humans and two experimental rat models. J Transl Med. 2014;3:220–229. doi:10.1186/s12967-014-0220-3
  • Hotter B, Hoffmann S, Ulm L, et al. IL-6 Plasma levels correlate with cerebral perfusion deficits and infarct sizes in stroke patients without associated infections. Front Neurol. 2019;10:1–8. doi:10.3389/fneur.2019.0008330761061
  • Nakase T, Yamazaki T, Ogura N, et al. The impact of inflammation on the pathogenesis and prognosis of ischemic stroke. J Neurol Sci. 2008;271:104–109. doi:10.1016/j.jns.2008.03.02018479710
  • Fahmi RM, Elsaid AF. Infarction size, interleukin-6, and their interaction are predictors of short-term stroke outcome in young egyptian adults. J Stroke Cerebrovasc Dis. 2016;25:2475–2481. doi:10.1016/j.jstrokecerebrovasdis.2016.06.02127402591
  • Rodríguez-yáñez M, Castillo J. Role of inflammatory markers in brain ischemia. Curr Opin Neurol. 2008;21:353–357. doi:10.1097/WCO.0b013e3282ffafbf18451722
  • Beridze M, Sanikidze T, Shakarishvilil R, et al. Selected acute phase CSF factors in ischemic stroke: findings and prognostic value. BMC Neurol. 2011;11:41–48. doi:10.1186/1471-2377-11-4121450100
  • Lehmann MF, Kallaur AP, Oliveira SR, et al. Inflammatory and metabolic markers and short-time outcome in patients with acute ischemic stroke in relation to TOAST subtypes. Metab Brain Dis. 2015;30:1417–1428. doi:10.1007/s11011-015-9731-826359121
  • Oto J, Suzue A, Inui D, et al. Plasma proinflammatory and anti-inflammatory cytokine and catecholamine concentrations as predictors of neurological outcome in acute stroke patients. J Anesth. 2008;22:207–212. doi:10.1007/s00540-008-0639-x18685925
  • Whiteley W, Jackson C, Lewis S, et al. Association of circulating inflammatory markers with recurrent vascular events afterstroke: a prospective cohort study. Stroke. 2011;42:10–16. doi:10.1161/STROKEAHA.110.58895421127302
  • Whiteley W, Wardlaw J, Dennis M, et al. The use of blood biomarkers to predict poor outcome after acute transient ischemic attack or ischemic stroke. Stroke. 2012;43:86–91. doi:10.1161/STROKEAHA.111.63408922020034
  • Meng C, Zhang JC, Shi RL, et al. Inhibition of interleukin-6 abolishes the promoting effects of pair housing on post-stroke neurogenesis. Neuroscience. 2015;307:160–170. doi:10.1016/j.neuroscience.2015.08.05526327363
  • Grønhøj MH, Clausen BH, Fenger CD, et al. Beneficial potential of intravenously administered IL-6 in improving outcome after murine experimental stroke. Brain Behav Immun. 2017;65:296–311. doi:10.1016/j.bbi.2017.05.01928587928
  • Gertz K, Kronenberg G, Kälin RE, et al. Essential role of interleukin-6 in post-stroke angiogenesis. Brain. 2012;135:1964–1980. doi:10.1093/brain/aws07522492561
  • Emsley HCA, Smith CJ, Gavin CM, et al. Clinical outcome following acute ischaemic stroke relates to both activation and autoregulatory inhibition of cytokine production. BMC Neurol. 2007;7:1–12. doi:10.1186/1471-2377-7-517204141
  • Smith CJ, Emsley HC, Udeh CD, et al. Interleukin-1 receptor antagonist reverses stroke-associated peripheral immune suppression. Cytokine. 2012;58(3):384–389. doi:10.1016/j.cyto.2012.02.01622445501
  • Smith CJ, Hulme S, Vail A, et al. SCIL-STROKE (Subcutaneous Interleukin-1 receptor antagonist in ischemic stroke): a randomized controlled Phase 2 trial. Stroke. 2018;49:1210–1216. doi:10.1161/STROKEAHA.118.02075029567761
  • Grabarek B, Bednarczyk M, Mazurek U. The characterization of tumor necrosis factor alpha (TNF-α), its role in cancerogenesis and cardiovascular system diseases and possibilities of using this cytokine as a molecular marker. Folia Biol Oecol. 2017;13:1–8. doi:10.1515/fobio-2017-0001
  • Lambertsen KL, Biber K, Finsen B. Inflammatory cytokines in experimental and human stroke. J Cereb Blood F Met. 2012;32:1677–1698. doi:10.1038/jcbfm.2012.88
  • Prakash S, Smith A. TNF-α. (Tumor Necrosis Factor-α) a paradox in thrombosis. Arterioscler Thromb Vasc Biol. 2018;38:2542–2543. doi:10.1161/ATVBAHA.118.31166030354242
  • Bartsch JW, Wildeboer D, Koller G, et al. Tumor necrosis factor-α (TNF-α) regulates shedding of TNF-α receptor 1 by the metalloprotease-disintegrin ADAM8: evidence for a protease-regulated feedback loop in neuroprotection. J Neurosci. 2010;30:12210–12218. doi:10.1523/JNEUROSCI.1520-10.201020826683
  • Lambertsen KL, Clausen BH, Babcock AA, et al. Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. J Neurosci. 2009;29:1319–1330. doi:10.1523/JNEUROSCI.5505-08.200919193879
  • Hasan N, McColgan P, Bentley P, et al. Towards the identification of blood biomarkers for acute stroke in humans: a comprehensive systematic review. Br J Clin Pharmacol. 2012;74:230–240. doi:10.1111/j.1365-2125.2012.04212.x22320313
  • Khaksar S, Bigdeli MR. Intra-cerebral cannabidiol infusion-induced neuroprotection is partly associated with the TNF-α/TNFR1/NF-кB pathway in transient focal cerebral ischemia. Brain Injury. 2017;31:1932–1943. doi:10.1080/02699052.2017.1358397
  • Arango-Dávila CA, Vera A, Londoño AC, et al. Soluble or soluble/membrane TNF-α inhibitors protect the brain from focal ischemic injury in rats. Int J Neurosci. 2015;125:936–940. doi:10.3109/00207454.2014.98090625350870
  • Doll DN, Rellick SL, Barr TL, et al. Rapid mitochondrial dysfunction mediates TNF-alpha-induced neurotoxicity. J Neurochem. 2015;132:443–445. doi:10.1111/jnc.1300825492727
  • Masztalewicz M, Nowacki P, Turowska-kowalska J, et al. Peripheral blood indicators of inflammatory response during. The first twenty-four hours if ischemic stroke. Ann Acad Med Stetin. 2010;56:36–40.21427812
  • Bokhari FA, Shakoori TA, Butt A, et al. TNF-alpha: a risk factor for ischemic stroke. J Ayub Med Coll Abbottabad. 2014;26:111–114.25603656
  • Maas MB, Furie KL. Molecular biomarkers in stroke diagnosis and prognosis. Biomar Med. 2009;3:363–383. doi:10.2217/bmm.09.30
  • Huţanu A, Iancu M, Bălaşa R, et al. Predicting functional outcome of ischemic stroke patients in Romania based on plasma CRP, sTNFR-1, D-Dimers, NGAL and NSE measured using a biochip array. Acta Pharmacol Sin. 2018;39:1228–1236. doi:10.1038/aps.2018.2629926842
  • Kim JW, Park MS, Kim JT, et al. The impact of tumor necrosis factor-α and interleukin-1β levels and polymorphisms on long-term stroke outcomes. Eur J Neurol. 2018;79:38–44. doi:10.1159/000484599
  • Waśniowska K. Chemokines–future therapeutic targets. Postepy Hig Med Dosw 2004;58:37–46.
  • Bielecki B, Głąbiński A. Chemokines and their receptors in pathogenesis of multiple sclerosis. Aktual Neurol. 2007;7:223–231.
  • Bašić-Kes V, Simundic AM, Nikolac N, et al. Pro-inflammatory and anti-inflammatory cytokines in acute ischemic stroke and their relation to early neurological deficit and stroke outcome. Clin Biochem. 2008;41:1330–1334. doi:10.1016/j.clinbiochem.2008.08.08018801351
  • Stone MJ, Hayward JA, Huang C. Mechanisms of regulation of the chemokine-receptor network. Int J Mol Sci. 2017;18:342–375. doi:10.3390/ijms18020342
  • Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol. 2000;18:217–242. doi:10.1146/annurev.immunol.18.1.21710837058
  • Murphy PM. International Union of Pharmacology. XXX. Update on chemokine receptor nomenclature. Pharmacol Rev. 2002;54:227–229. doi:10.1124/pr.54.2.22712037138
  • Wang Y, Huang J, Li Y. Roles of chemokine CXCL12 and its receptors in ischemic stroke. Curr Drug Targets. 2012;13:166–172. doi:10.2174/13894501279920160322204316
  • Moser B, Wolf M, Walz A, et al. Chemokines: multiple levels of leukocyte migration control. Trends Immunol. 2004;25:75–84. doi:10.1016/j.it.2003.12.00515102366
  • Baggiolini M. Chemokines in pathology and medicine. J Intern Med. 2001;250:91–104. doi:10.1046/j.1365-2796.2001.00867.x11489059
  • Engelhardt B, Ransohoff RM. Capture, crawl, cross: the T cell code to breach the blood-brain barriers. Trends Immunol. 2012;33:579–589. doi:10.1016/j.it.2012.07.00422926201
  • Morancho A, Rosell A, García-bonilla L, et al. Metalloproteinase and stroke infarct size: role for anti-inflammatory treatment? Ann NY Acad Sci. 2010;1207:123–133. doi:10.1111/j.1749-6632.2010.05734.x20955435
  • Lee Y, Lee SR, Choi SS, et al. Therapeutically targeting neuroinflammation and microglia after acute ischemic stroke. Biomed Res Int. 2014;2014:1–9.
  • García-berrocoso T, Giralt D, Lombart V, et al. Chemokines after human ischemic stroke from neurovascular unit to blood using protein arrays. Transl Proteom. 2014;3:1–9. doi:10.1016/j.trprot.2014.03.001
  • Mirabelli-badenier M, Braunersreuther V, Viviani GL. CC and CXC chemokines are pivotal mediators of cerebral injury in ischaemic stroke. Thromb Haemost. 2011;105:409–420. doi:10.1160/TH10-10-066221174009
  • Kapurniotu A, Gokce O, Bernhagen J. The multitasking potential of alarmins and atypical chemokines. Front Med (Lausanne). 2019;6:3. doi:10.3389/fmed.2019.0000330729111
  • Rostène W, Dansereau MA, Godefroy D, et al. Neurochemokines: a menage a trois providing new insights on the functions of chemokines in the central nervous system. J Neurochem. 2011;118:680–694. doi:10.1111/j.1471-4159.2011.07371.x21722132
  • Rostène W, Guyon A, Kular L, et al. Chemokines and chemokine receptors: new actors in neuroendocrine regulations. Front Neuroendocrin. 2011;32:10–24. doi:10.1016/j.yfrne.2010.07.001
  • Lanfranco MF, Mocchetti I, Burns MP, et al. Glial- and neuronal-specific expression of CCL5 I. mRNA in the rat brain. Front Neuroanat. 2018;12:1–13. doi:10.3389/fnana.2018.0000129440997
  • Pharoah DS, Varsani H, Tatham RW, et al. Expression of the inflammatory chemokines CCL5, CCL3 and CXCL10 in juvenile idiopathic arthritis, and demonstration of CCL5 production by an atypical subset of CD8+ T cells. Arthritis Res Ther. 2006;8:1–11. doi:10.1186/ar1913
  • White GE, Iqbal AJ, Greaves DR. CC chemokine receptors and chronic inflammation - therapeutic opportunities and pharmacological challenges. Pharmacol Rev. 2013;65:47–89. doi:10.1124/pr.111.00507423300131
  • Siniscalchi A, Gallelli L, Malferrari G, et al. Cerebral stroke injury: the role of cytokines and brain inflammation. J Basic Clin Physiol Pharmacol. 2014;25:131–137. doi:10.1515/jbcpp-2013-012124515999
  • Venencia A, Subramanian A, Agrawal D, et al. RANTES levels in peripheral blood, CSF and contused brain tissue as a marker for outcome in traumatic brain injury (TBI) patients. BMC Res Notes. 2017;10:139–148. doi:10.1186/s13104-017-2459-228340601
  • Villapol S, Loane D, Burns MP. Sexual dimorphism in the inflammatory response to traumatic brain injury. Glia. 2017;65:1423–1438. doi:10.1002/glia.v65.928608978
  • Vajen T, Koenen RR, Werner I, et al. Blocking CCL5-CXCL4 heteromerization preserves heart function after myocardial infarction by attenuating leukocyte recruitment and NETosis. Sci Rep. 2018;8:1–11. doi:10.1038/s41598-018-29026-029311619
  • Minami M, Satoh M. Role of chemokines in ischemic neuronal stress. Neuromol Med. 2005;7:149–155. doi:10.1385/NMM:7:1-2:149
  • Jiang L, Newman M, Saporta S, et al. MIP-1α and MCP-1 induce migration of human umbilical cord blood cells in models of stroke. Curr Neurovasc Res. 2008;5:118–124. doi:10.2174/15672020878431025918473828
  • Dimitrijevic OB, Stamatovic SM, Keep R, et al. Effects of the chemokine CCL2 on blood–brain barrier permeability during ischemia–reperfusion injury. J Cereb Blood Flow Metab. 2006;26:797–810. doi:10.1038/sj.jcbfm.960022916192992
  • Kumai Y, Ooboshi H, Takada J, et al. Anti–monocyte chemoattractant protein-1 gene therapy protects against focal brain ischemia in hypertensive rats. J Cereb Blood Flow Metab. 2004;24:1359–1368. doi:10.1097/01.WCB.0000143534.76388.3C15625410
  • Tarozzo G, Campanella M, Ghiani M, et al. Expression of fractalkine and its receptor, CX3CR1, in response to ischaemia-reperfusion brain injury in the rat. Eur J Neurosci. 2002;15:1663–1668. doi:10.1046/j.1460-9568.2002.02007.x12059974
  • Sheridan GK, Murphy KJ. Neuron–glia crosstalk in health and disease: fractalkine and CX3CR1 take centre stage. Open Biol. 2013;3:1–14. doi:10.1098/rsob.130181
  • Dénes Á, Ferenczi S, Halász J, et al. Role of CX3CR1 (fractalkine receptor) in brain damage and inflammation induced by focal cerebral ischemia in mouse. J Cereb Blood Flow Metab. 2008;28:1707–1721. doi:10.1038/jcbfm.2008.6418575457
  • Cipriani R, Villa P, Chece G, et al. CX3CL1 is neuroprotective in permanent focal cerebral ischemia in rodents. J Neurosci. 2011;31:16327–16335. doi:10.1523/JNEUROSCI.3611-11.201122072684
  • Terao S, Yilmaz G, Stokes KY, et al. Blood cell-derived RANTES mediates cerebral microvascular dysfunction, inflammation, and tissue injury after focal ischemia-reperfusion. Stroke. 2008;39:2560–2570. doi:10.1161/STROKEAHA.107.51315018635850
  • Kadi L, Selvaraju R, de Lys P, et al. Differential effects of chemokines on oligodendrocyte precursor proliferation and myelin formation in vitro. J Neuroimmunol. 2006;174:133–146. doi:10.1016/j.jneuroim.2006.01.01116574247
  • Ignatov A, Robert J, Gregory-evans C, et al. RANTES stimulates Ca2+ mobilization and inositol trisphosphate (IP3) formation in cells transfected with G protein-coupled receptor 75. Br J Pharmacol. 2006;149:490–497. doi:10.1038/sj.bjp.070690917001303
  • Rozzi SJ, Borelli G, Ryan K, et al. PACAP27 is protective against tat-induced neurotoxicity. J Mol Neurosci. 2014;54:485–493. doi:10.1007/s12031-014-0273-z24696163
  • Campbell LA, Avdoshina V, Day C, et al. Pharmacological induction of CCL5 in vivo prevents gp120-mediated neuronal injury. Neuropharmacology. 2015;92:98–107. doi:10.1016/j.neuropharm.2015.01.00925623966
  • Tokami H, Ago T, Sugimori H, et al. RANTES has a potential to play a neuroprotective role in an autocrine/paracrine manner after ischemic stroke. Brain Res. 2013;23:122–132. doi:10.1016/j.brainres.2013.04.022
  • Victoria ECG, de Brito Toscano EC, de Sousa Cardoso AC, et al. Knockdown of C-C chemokine receptor 5 (CCR5) is protective against cerebral ischemia and reperfusion injury. Curr Neurovasc Res. 2017;14:125–131. doi:10.2174/156720261466617031311305628294064
  • Fan Y, Xiong X, Zhang Y, et al. MKEY, a peptide inhibitor of CXCL4‐CCL5 heterodimer formation, protects against stroke in mice. J Am Heart Assoc. 2016;5:1–8.
  • Li P, Wang L, Zhou Y, et al. C-C chemokine receptor type 5 (CCR5)-mediated docking of transferred Tregs protects against early blood-brain. J Am Heart Assoc. 2017;6:1–17. doi:10.1161/JAHA.117.006387
  • Montecucco F, Lenglet S, Gayet-ageron A, et al. Systemic and intraplaque mediators of inflammation are increased in patients symptomatic for ischemic stroke. Stroke. 2010;41:1394–1404. doi:10.1161/STROKEAHA.110.57836920538699
  • Zaremba J, Ilkowski J, Losy J. Serial measurements of levels of the chemokines CCL2, CCL3 and CCL5 in serum of patients with acute ischaemic stroke. Folia Neuropathol. 2006;44:282–289.17183455
  • Canouï-Poitrine F, Luc G, Mallat Z, et al. Systemic chemokine levels, coronary heart disease, and ischemic stroke events. Neurology. 2011;77:1165–1173. doi:10.1212/WNL.0b013e31822dc7c821849651