119
Views
2
CrossRef citations to date
0
Altmetric
Original Research

The Extract from Acidosasa longiligula Alleviates in vitro UV-Induced Skin Cell Damage via Positive Regulation of Thioredoxin 1

, ORCID Icon, ORCID Icon, &
Pages 897-905 | Published online: 17 Jun 2020

References

  • Breitkreutz D, Mirancea N, Nischt R. Basement membranes in skin: unique matrix structures with diverse functions? Histochem Cell Biol. 2009;132:1–10. doi:10.1007/s00418-009-0586-019333614
  • Iozzo RV. Basement membrane proteoglycans: from cellar to ceiling. Nat Rev Mol Cell Biol. 2005;6:646–656. doi:10.1038/nrm170216064139
  • Masaki H, Atsumi T, Sakurai H. Detection of hydrogen peroxide and hydroxyl radicals in murine skin fibroblasts under UVB irradiation. Biochem Biophys Res Commun. 1995;206:474–479. doi:10.1006/bbrc.1995.10677826364
  • Hattori Y, et al. 8-hydroxy-2ʹ-deoxyguanosine is increased in epidermal cells of hairless mice after chronic ultraviolet B exposure. J Invest Dermatol. 1996;107:733–737. doi:10.1111/1523-1747.ep123656258875958
  • Heck DE, Vetrano AM, Mariano TM, Laskin JD. UVB light stimulates production of reactive oxygen species: unexpected role for catalase. J Biol Chem. 2003;278:22432–22436. doi:10.1074/jbc.C30004820012730222
  • Terra VA, et al. Genistein prevents ultraviolet B radiation-induced nitrosative skin injury and promotes cell proliferation. J Photochem Photobiol B. 2015;144:20–27. doi:10.1016/j.jphotobiol.2015.01.01325668145
  • Narayanan DL, Saladi RN, Fox JL. Ultraviolet radiation and skin cancer. Int J Dermatol. 2010;49:978–986. doi:10.1111/j.1365-4632.2010.04474.x20883261
  • Sime S, Reeve VE. Protection from inflammation, immunosuppression and carcinogenesis induced by UV radiation in mice by topical Pycnogenol. Photochem Photobiol. 2004;79:193–198. doi:10.1562/0031-8655(2004)079<0193:pfiiac>2.0.co15068032
  • Sample A, He YY. Mechanisms and prevention of UV-induced melanoma. Photodermatol Photoimmunol Photomed. 2018;34:13–24. doi:10.1111/phpp.1232928703311
  • Lee S, Kim SM, Lee RT. Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. Antioxid Redox Signal. 2013;18:1165–1207. doi:10.1089/ars.2011.432222607099
  • Karlenius TC, Tonissen KF. Thioredoxin and cancer: a role for thioredoxin in all states of tumor oxygenation. Cancers. 2010;2:209–232. doi:10.3390/cancers202020924281068
  • Arner ES. Focus on mammalian thioredoxin reductases–important selenoproteins with versatile functions. Biochim Biophys Acta. 2009;1790:495–526. doi:10.1016/j.bbagen.2009.01.01419364476
  • Holmgren A. Thioredoxin. Annu Rev Biochem. 1985;54:237–271. doi:10.1146/annurev.bi.54.070185.0013213896121
  • Gromer S, Urig S, Becker K. The thioredoxin system–from science to clinic. Med Res Rev. 2004;24:40–89. doi:10.1002/med.1005114595672
  • Anand P, Stamler JS. Enzymatic mechanisms regulating protein S-nitrosylation: implications in health and disease. J Mol Med. 2012;90:233–244. doi:10.1007/s00109-012-0878-z22361849
  • Kim A, Im M, Yim NH, Jung YP, Ma JY. Aqueous extract of Bambusa caulis in taeniam inhibits PMA-induced tumor cell invasion and pulmonary metastasis: suppression of NF-kappaB activation through ROS signaling. PLoS One. 2013;8:e78061. doi:10.1371/journal.pone.007806124205091
  • Liu JX, et al. Bamboo leaf extract improves spatial learning ability in a rat model with senile dementia. J Zhejiang Univ Sci B. 2015;16:593–601. doi:10.1631/jzus.B140024926160717
  • Kim NR, Nam SY, Ryu KJ, Kim HM, Jeong HJ. Effects of bamboo salt and its component, hydrogen sulfide, on enhancing immunity. Mol Med Rep. 2016;14:1673–1680. doi:10.3892/mmr.2016.540727315400
  • Choi MH, Jo HG, Yang JH, Ki SH, Shin HJ. Antioxidative and anti-melanogenic activities of bamboo stems (Phyllostachys nigra variety henosis) via PKA/CREB-Mediated MITF downregulation in B16F10 melanoma cells. Int J Mol Sci. 2018;19:409. doi:10.3390/ijms19020409
  • Yoou MS, Nam SY, Wan Yoon K, Jeong HJ, Kim HM. Bamboo salt suppresses skin inflammation in mice with 2, 4-dinitrofluorobenzene-induced atopic dermatitis. Chin J Nat Med. 2018;16:97–104. doi:10.1016/S1875-5364(18)30035-929455734
  • Ji C, et al. Gremlin inhibits UV-induced skin cell damages via activating VEGFR2-Nrf2 signaling. Oncotarget. 2016;7:84748–84757. doi:10.18632/oncotarget.1245427713170
  • Ji C, et al. Exogenous cell-permeable C6 ceramide sensitizes multiple cancer cell lines to Doxorubicin-induced apoptosis by promoting AMPK activation and mTORC1 inhibition. Oncogene. 2010;29:6557–6568. doi:10.1038/onc.2010.37920802518
  • Ji C, et al. Ultra-violet B (UVB)-induced skin cell death occurs through a cyclophilin D intrinsic signaling pathway. Biochem Biophys Res Commun. 2012;425:825–829. doi:10.1016/j.bbrc.2012.07.16022892127
  • Ji C, et al. Trans-Zeatin attenuates ultraviolet induced down-regulation of aquaporin-3 in cultured human skin keratinocytes. Int J Mol Med. 2010;26:257–263. doi:10.3892/ijmm_0000046020596606
  • Ji C, et al. Perifosine sensitizes UVB-induced apoptosis in skin cells: new implication of skin cancer prevention? Cell Signal. 2012;24:1781–1789. doi:10.1016/j.cellsig.2012.05.00322584119
  • Gong T, et al. Celecoxib suppresses cutaneous squamous-cell carcinoma cell migration via inhibition of SDF1-induced endocytosis of CXCR4. Onco Targets Ther. 2018;11:8063–8071. doi:10.2147/OTT.S18047230519048
  • Ji C, Yang B, Huang SY, Huang JW, Cheng B. Salubrinal protects human skin fibroblasts against UVB-induced cell death by blocking endoplasmic reticulum (ER) stress and regulating calcium homeostasis. Biochem Biophys Res Commun. 2017;493:1371–1376. doi:10.1016/j.bbrc.2017.10.01228988108
  • de Gruijl FR, van Kranen HJ, Mullenders LH. UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer. J photochem photobiol B, Biol. 2001;63:19–27. doi:10.1016/s1011-1344(01)00199-3
  • Ichihashi M, et al. UV-induced skin damage. Toxicology. 2003;189:21–39. doi:10.1016/s0300-483x(03)00150-112821280
  • Arner ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur j Biochem. 2000;267:6102–6109. doi:10.1046/j.1432-1327.2000.01701.x11012661
  • Kelleher ZT, et al. Thioredoxin-mediated denitrosylation regulates cytokine-induced nuclear factor kappaB (NF-kappaB) activation. J Biol Chem. 2014;289:3066–3072. doi:10.1074/jbc.M113.50393824338024
  • Matsui M, et al. Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. Dev Biol. 1996;178:179–185. doi:10.1006/dbio.1996.02088812119
  • Gasdaska PY, Oblong JE, Cotgreave IA, Powis G. The predicted amino acid sequence of human thioredoxin is identical to that of the autocrine growth factor human adult T-cell derived factor (ADF): thioredoxin mRNA is elevated in some human tumors. Biochim Biophys Acta. 1994;1218:292–296. doi:10.1016/0167-4781(94)90180-58049254
  • Berggren M, et al. Thioredoxin and thioredoxin reductase gene expression in human tumors and cell lines, and the effects of serum stimulation and hypoxia. Anticancer Res. 1996;16:3459–3466.9042207
  • Grogan TM, et al. Thioredoxin, a putative oncogene product, is overexpressed in gastric carcinoma and associated with increased proliferation and increased cell survival. Hum Pathol. 2000;31:475–481. doi:10.1053/hp.2000.654610821495
  • Mitsui A, et al. Overexpression of human thioredoxin in transgenic mice controls oxidative stress and life span. Antioxid Redox Signal. 2002;4:693–696. doi:10.1089/1523086026022020112230882
  • Matthews JR, Wakasugi N, Virelizier JL, Yodoi J, Hay RT. Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res. 1992;20:3821–3830. doi:10.1093/nar/20.15.38211508666
  • Kabe Y, Ando K, Hirao S, Yoshida M, Handa H. Redox regulation of NF-kappaB activation: distinct redox regulation between the cytoplasm and the nucleus. Antioxid Redox Signal. 2005;7:395–403. doi:10.1089/ars.2005.7.39515706086