264
Views
11
CrossRef citations to date
0
Altmetric
Original Research

Detection of Age-Related Hearing Losses (ARHL) via Transient-Evoked Otoacoustic Emissions

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 927-935 | Published online: 22 Jun 2020

References

  • Fetoni AR, Picciotti PM, Paludetti G, Troiani D. Pathogenesis of presbycusis in animal models: a review. Exp Gerontol. 2011;46(6):413–425. doi:10.1016/j.exger.2010.12.00321211561
  • Gates GA, Mills JH. Presbycusis. Lancet. 2005;366(9491):1111–1120. doi:10.1016/S0140-6736(05)67423-516182900
  • Jenning CR, Jones NS. Presbycusis. J Laryngol Otol. 2001;115(3):171–178. doi:10.1258/002221501190698411244520
  • Kujawa SG, Liberman MC. Acceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth. J Neurosci. 2006;26(7):2115–2123. doi:10.1523/JNEUROSCI.4985-05.200616481444
  • Fetoni AR, Zorzi V, Paciello F, et al. Cx26 partial loss causes accelerated presbycusis by redox imbalance and dysregulation of Nfr2 pathway. Redox Biol. 2018;19:301–317. doi:10.1016/j.redox.2018.08.00230199819
  • Bielefeld EC, Tanaka C, Chen GD, Henderson D. Age-related hearing loss: is it a preventable condition? Hear Res. 2010;264(1–2):98–107. doi:10.1016/j.heares.2009.09.00119735708
  • Mazelová J, Popelar J, Syka J. Auditory function in presbycusis: peripheral vs. central changes. Exp Gerontol. 2003;38(1–2):87–94. doi:10.1016/S0531-5565(02)00155-912543265
  • Schuknecht HF, Gacek MR. Cochlear pathology in presbycusis. Ann Otol Rhinol Laryngol. 1993;102(1_suppl):1–16. doi:10.1177/00034894931020S101
  • Kemp DT. Stimulated acoustic emissions from within the human auditory system. J Acoust. Soc Am. 1978;64(5):1386–1391. doi:10.1121/1.382104744838
  • Shera CA, Guinan JJ. Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am. 1999;105(2):782–798. doi:10.1121/1.4269489972564
  • Probst R, Lonsbury-Martin BL, Martin GK. A review of otoacoustic emissions. J Acoust Soc Am. 1991;89:2027–2067. doi:10.1121/1.4008971860995
  • Avan P, Bonfils P, Mom T. Correlations among distortion product otoacoustic emissions, thresholds and sensory cell impairment In: Henderson D, Prasaher D, Kopke R, Salvi R, Hamernik RP, editors. Noise Induced Hearing Loss: Basic Mechanisms, Prevention and Control. London, UK: Noise Research Networks Publications; 2001:411–427.
  • Avan P, Bonfils P. Distortion-product otoacoustic emission spectra and high-resolution audiometry in noise-induced hearing loss. Hear Res. 2005;209(1–2):68–75. doi:10.1016/j.heares.2005.06.00816112827
  • Uchida Y, Ando F, Shimokata H, Sugiura S, Ueda H, Nakashima T. The effects of aging on distortion-product otoacoustic emissions in adults with normal hearing. Ear Hear. 2008;29(2):176–184. doi:10.1097/AUD.0b013e3181634eb818595184
  • Hamdan AL, Abouchacra KS, Zeki AG. Transient-evoked otoacoustic emissions in a group of professional singers who have normal pure-tone hearing thresholds. Ear Hear. 2008;29(3):360–377. doi:10.1097/AUD.0b013e31816a0d1e18382377
  • Fetoni AR, Piacentini R, Fiorita A, Paludetti G, Troiani D. Water-soluble coenzyme Q10 formulation Q-ter promotes outer hair cells survival in a guinea pig model of noise induced hearing loss IH. Brain Res. 2009;1257:108–116. doi:10.1016/j.brainres.2008.12.02719133240
  • Attias J, Furst M, Furman V, et al. Noise-induced otoacoustic emission loss with or without hearing loss. Ear Hear. 1995;16:612–618. doi:10.1097/00003446-199512000-000078747810
  • Shupak A, Tal D, Sharoni Z, Oren M, Ravid A, Pratt H. Otoacoustic emissions in early noise-induced hearing loss. Otol Neurotol. 2007;28(6):745–752. doi:10.1097/MAO.0b013e3180a726c917721363
  • Hatzopoulos S, Grzanka A, Martini A, Konopka W. New clinical insights for transiently evoked otoacoustic emission protocols. Med Sci Monit. 2009;15(8):CR403–408.19644416
  • Helleman HW, Jansen EJ, Dreschler WA. Otoacoustic emissions in a hearing conservation program: general applicability in longitudinal monitoring and the relation to changes in pure-tone thresholds. Int J Audiol. 2010;49(6):410–419. doi:10.3109/1499202090352761620192875
  • Moscicki E, Elkins E, Baum H, McNamara P. Hearing loss in the elderly: an epidemiologic study of the framingham heart society cohort. Ear Hear. 1985;6:184–190. doi:10.1097/00003446-198507000-000034043571
  • Zimatore G, Fetoni AR, Paludetti G, Cavagnaro M, Podda MV, Troiani D. Post-processing analysis of transient-evoked otoacoustic emissions to detect 4 kHz-notch hearing impairment – a pilot study. Med Sci Monit. 2011;17(6):MT41–49. doi:10.12659/MSM.88179321629197
  • Zimatore G, Cavagnaro M. Recurrences analysis of otoacoustic emissions” Chapter 8 In: Charles W, Marwan N, editors. Recurrence Quantification Analysis. Theory and Best Practices. Springer Publisher Recurrence Quantification Analysis; 2015:253–278.
  • Zimatore G, Hatzopoulos S, Giuliani A, Martini A, Colosimo A. Comparison of transient otoacoustic emission responses from neonatal and adult ears. J Appl Physiol. 2002;92(6):2521–2528. doi:10.1152/japplphysiol.01163.200112015368
  • Zimatore G, Cavagnaro M, Giuliani A, Colosimo A. Human acoustic fingerprints. Biophys Bioeng. 2008;1(2):1–8.
  • Zimatore G, Hatzopoulos S, Giuliani A, Martini A, Colosimo A. Otoacoustic emissions at different click intensities: invariant and subject dependent features. J Appl Physiol. 2003;95(6):2299–2305. doi:10.1152/japplphysiol.00667.200312937032
  • Balatsouras D, Kaberos A, Karapantzos E, Homsioglou E, Economou NC, Korres S. Correlation of transiently evoked otoacoustic emission measures to auditory thresholds. Med Sci Monit. 2004;10(2):MT24–30.14737052
  • Hoth S, Gudmundsdottir K, Plinkert P. Age dependence of otoacoustic emissions: the loss of amplitude is primarily caused by age-related hearing loss and not by aging alone. Eur Arch Otorhinol. 2010;267(5):679–690. doi:10.1007/s00405-009-1106-5
  • Castor X, Veuillet E, Morgon A, Collet L. Influence of aging on active cochlear micromechanical properties and on the medial olivocochlear system in humans. Hear Res. 1994;77(1–2):1–8. doi:10.1016/0378-5955(94)90248-87928721
  • Jacobson JT, Jacobson CA. Otodynamics. ILO OAE Instrument User Manual. ILO OAE Instrument User Manual. Issue 5a. London: Otodynamics Ltd; 1997.
  • Webber CL, Zbilut JP. Dynamical assessment of physiological systems and states using recurrence plot strategy. J Appl Physiol. 1994;76:965. doi:10.1152/jappl.1994.76.2.9658175612
  • Marwan N, Romano MC, Thiel M, Kurths J. Recurrence plots for the analysis of complex systems. Phys Rep. 2004;438(5–6):237–329. doi:10.1016/j.physrep.2006.11.001
  • Orlando G, Zimatore G. Recurrence quantification analysis of business cycles. Chaos Solitons Fractals. 2018;110:82–94. doi:10.1016/j.chaos.2018.02.032
  • Orlando G, Zimatore G. Recurrence quantification analysis on a kaldorian business cycle model nonlinear dynamics. Nonlinear Dyn. 2020;100(1):785–801. doi:10.1007/s11071-020-05511-y
  • Zimatore G, Garilli G, Poscolieri M, Rafanelli C, Gizzi F, Lazzari M. The remarkable coherence between two Italian far away recording stations points to a role of acoustic emissions from crustal rocks for earthquake analysis. Chaos: Interdiscip J Nonlinear Sci. 2017;27(4):043101. doi:10.1063/1.4979351
  • Zimatore G, Gallotta MC, Innocenti L, et al. Recurrence quantification analysis of heart rate variability during continuous incremental exercise test in obese subjects. Chaos Interd J Non Lin Sci. 2020;30:3.
  • Bartholomew DJ. The foundation of factor analysis. Biometrika. 1984;71:221–232. doi:10.1093/biomet/71.2.221
  • Vinck BM, van Cauwenberge PB, Leroy L, Corthals P. Sensitivity of transient evoked and distortion product otoacoustic emissions to the direct effects of noise on the human cochlea. Audiology. 1999;38(1):44–52. doi:10.3109/0020609990907300110052835
  • Zimatore G, Giuliani A, Parlapiano C, et al. Revealing deterministic structures in click-evoked otoacoustic emissions. J Appl Physiol. 2000;88(4):1431–1437. doi:10.1152/jappl.2000.88.4.143110749839