479
Views
18
CrossRef citations to date
0
Altmetric
Review

Shelterin Complex at Telomeres: Implications in Ageing

, ORCID Icon, , , , , ORCID Icon & show all
Pages 827-839 | Published online: 03 Jun 2020

References

  • Aksenova AY, Mirkin SM. At the beginning of the end and in the middle of the beginning: structure and maintenance of telomeric DNA repeats and interstitial telomeric sequences. Genes. 2019;10(2):118. doi:10.3390/genes10020118
  • Olovnikov AM. Telomeres, telomerase, and aging: origin of the theory. Exp Gerontol. 1996;31(4):443–448. doi:10.1016/0531-5565(96)00005-89415101
  • Maestroni L, Matmati S, Coulon S. Solving the telomere replication problem. Genes. 2017;8(2):55. doi:10.3390/genes8020055
  • Olovnikov AM. A theory of marginotomy: the incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol. 1973;41(1):181–190. doi:10.1016/0022-5193(73)90198-74754905
  • Watson JD. Origin of concatemeric T7DNA. Nat New Biol. 1972;239(94):197–201. doi:10.1038/newbio239197a04507727
  • Lidzbarsky G, Gutman D, Shekhidem HA, Sharvit L, Atzmon G. Genomic instabilities, cellular senescence, and aging: in vitro, in vivo and aging-like human syndromes. Front Med. 2018;5.
  • Tchkonia T, Zhu Y, Van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest. 2013;123(3):966–972. doi:10.1172/JCI6409823454759
  • Ogrodnik M, Salmonowicz H, Gladyshev VN. Integrating cellular senescence with the concept of damage accumulation in aging: relevance for clearance of senescent cells. Aging Cell. 2019;18(1):e12841. doi:10.1111/acel.1284130346102
  • Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005;120(4):513–522. doi:10.1016/j.cell.2005.02.00315734683
  • Coppé J-P, Patil CK, Rodier F, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6:12. doi:10.1371/journal.pbio.0060098
  • Campisi J, Di Fagagna FDA. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8(9):729–740. doi:10.1038/nrm223317667954
  • von Zglinicki T, Wan T, Miwa S. Senescence in post-mitotic cells: a driver of aging? Antioxid Redox Signal. 2020. doi:10.1089/ars.2020.8048
  • Zhu Y, Liu X, Ding X, Wang F, Geng X. Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology. 2019;20(1):1–16. doi:10.1007/s10522-018-9769-130229407
  • Saretzki G. Telomeres, Telomerase and Aging. Biochemistry and Cell Biology of Aging: Part I Biomedical Science. Springer; 2018:221–308.
  • Muñoz‐Jordán JL, Cross GA, de Lange T, Griffith JD. t‐loops at trypanosome telomeres. EMBO J. 2001;20(3):579–588. doi:10.1093/emboj/20.3.57911157764
  • Stansel RM, de Lange T, Griffith JD. T‐loop assembly in vitro involves binding of TRF2 near the 3′ telomeric overhang. EMBO J. 2001;20(19):5532–5540. doi:10.1093/emboj/20.19.553211574485
  • Cimino-Reale G, Pascale E, Battiloro E, Starace G, Verna R, D’Ambrosio E. The length of telomeric G-rich strand 3′-overhang measured by oligonucleotide ligation assay. Nucleic Acids Res. 2001;29(7):e35–e. doi:10.1093/nar/29.7.e3511266570
  • de Lange T. Shelterin-mediated telomere protection. Annu Rev Genet. 2018;52(1):223–247. doi:10.1146/annurev-genet-032918-02192130208292
  • Arnoult N, Karlseder J. Complex interactions between the DNA-damage response and mammalian telomeres. Nat Struct Mol Biol. 2015;22(11):859. doi:10.1038/nsmb.309226581520
  • Yarmohamadi A, Asadi J, Gharaei R, Mir M, Khoshnazar AK. Valproic acid, a histone deacetylase inhibitor, enhances radiosensitivity in breast cancer cell line. J Rad Cancer Res. 2018;9(2):86. doi:10.4103/jrcr.jrcr_37_17
  • Karimian A, Mir SM, Parsian H, et al. Crosstalk between Phosphoinositide 3-kinase/Akt signaling pathway with DNA damage response and oxidative stress in cancer. J Cell Biochem. 2019;120(6):10248–10272. doi:10.1002/jcb.2830930592328
  • Wang Y, Yang J, Wild AT, et al. G-quadruplex DNA drives genomic instability and represents a targetable molecular abnormality in ATRX-deficient malignant glioma. Nat Commun. 2019;10(1):943. doi:10.1038/s41467-019-08905-830808951
  • Hänsel-Hertsch R, Di Antonio M, Balasubramanian S. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat Rev Mol Cell Biol. 2017;18(5):279. doi:10.1038/nrm.2017.328225080
  • De Magis A, Manzo SG, Russo M, et al. DNA damage and genome instability by G-quadruplex ligands are mediated by R loops in human cancer cells. Proc Natl Acad Sci. 2019;116(3):816–825. doi:10.1073/pnas.181040911630591567
  • Wu RA, Upton HE, Vogan JM, Collins K. Telomerase mechanism of telomere synthesis. Annu Rev Biochem. 2017;86(1):439–460. doi:10.1146/annurev-biochem-061516-04501928141967
  • Doheny JG, Mottus R, Grigliatti TA. Telomeric position effect—a third silencing mechanism in eukaryotes. PLoS One. 2008;3(12):e3864. doi:10.1371/journal.pone.000386419057646
  • Aparicio OM, Gottschling DE. Overcoming telomeric silencing: a trans-activator competes to establish gene expression in a cell cycle-dependent way. Genes Dev. 1994;8(10):1133–1146. doi:10.1101/gad.8.10.11337926719
  • Cusanelli E, Chartrand P. Telomeric repeat-containing RNA TERRA: a noncoding RNA connecting telomere biology to genome integrity. Front Genet. 2015;6:143. doi:10.3389/fgene.2015.0014325926849
  • Farnung BO, Brun CM, Arora R, Lorenzi LE, Azzalin CM. Telomerase efficiently elongates highly transcribing telomeres in human cancer cells. PLoS One. 2012;7:4. doi:10.1371/journal.pone.0035714
  • Deng Z, Norseen J, Wiedmer A, Riethman H, Lieberman PM. TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres. Mol Cell. 2009;35(4):403–413. doi:10.1016/j.molcel.2009.06.02519716786
  • Porro A, Feuerhahn S, Reichenbach P, Lingner J. Molecular dissection of telomeric repeat-containing RNA biogenesis unveils the presence of distinct and multiple regulatory pathways. Mol Cell Biol. 2010;30(20):4808–4817. doi:10.1128/MCB.00460-1020713443
  • Flynn RL, Centore RC, O’Sullivan RJ, et al. TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA. Nature. 2011;471(7339):532–536. doi:10.1038/nature0977221399625
  • Graf M, Bonetti D, Lockhart A, et al. Telomere length determines TERRA and R-loop regulation through the cell cycle. Cell. 2017;170(1):72–85. e14. doi:10.1016/j.cell.2017.06.00628666126
  • Bettin N, Oss Pegorar C, Cusanelli E. The emerging roles of TERRA in telomere maintenance and genome stability. Cells. 2019;8(3):246. doi:10.3390/cells8030246
  • Deng Z, Campbell AE, Lieberman PM. TERRA, CpG methylation, and telomere heterochromatin: lessons from ICF syndrome cells. Cell Cycle. 2010;9(1):69–74. doi:10.4161/cc.9.1.1035820016274
  • Nergadze SG, Farnung BO, Wischnewski H, et al. CpG-island promoters drive transcription of human telomeres. Rna. 2009;15(12):2186–2194. doi:10.1261/rna.174830919850908
  • Deng Z, Wang Z, Stong N, et al. A role for CTCF and cohesin in subtelomere chromatin organization, TERRA transcription, and telomere end protection. EMBO J. 2012;31(21):4165–4178. doi:10.1038/emboj.2012.26623010778
  • Zhang Q-S, Manche L, Xu R-M, Krainer AR. hnRNP A1 associates with telomere ends and stimulates telomerase activity. RNA. 2006;12(6):1116–1128. doi:10.1261/rna.5880616603717
  • Le PN, Maranon DG, Altina NH, Battaglia CL, Bailey SM. TERRA, hnRNP A1, and DNA-PKcs interactions at human telomeres. Front Oncol. 2013;3:91. doi:10.3389/fonc.2013.0009123616949
  • Yamada T, Yoshimura H, Shimada R, et al. Spatiotemporal analysis with a genetically encoded fluorescent RNA probe reveals TERRA function around telomeres. Sci Rep. 2016;6(1):38910. doi:10.1038/srep3891027958374
  • Schmutz I, de Lange T. Shelterin. Curr Biol. 2016;26(10):R397–R9. doi:10.1016/j.cub.2016.01.05627218840
  • Benarroch-Popivker D, Pisano S, Mendez-Bermudez A, et al. TRF2-mediated control of telomere DNA topology as a mechanism for chromosome-end protection. Mol Cell. 2016;61(2):274–286. doi:10.1016/j.molcel.2015.12.00926774283
  • Rai R, Chen Y, Lei M, Chang S. TRF2-RAP1 is required to protect telomeres from engaging in homologous recombination-mediated deletions and fusions. Nat Commun. 2016;7:10881. doi:10.1038/ncomms1088126941064
  • Kibe T, Zimmermann M, de Lange T. TPP1 blocks an ATR-mediated resection mechanism at telomeres. Mol Cell. 2016;61(2):236–246. doi:10.1016/j.molcel.2015.12.01626778124
  • Frescas D, de Lange T. A TIN2 dyskeratosis congenita mutation causes telomerase-independent telomere shortening in mice. Genes Dev. 2014;28(2):153–166. doi:10.1101/gad.233395.11324449270
  • Hu C, Rai R, Huang C, et al. Structural and functional analyses of the mammalian TIN2-TPP1-TRF2 telomeric complex. Cell Res. 2017;27(12):1485. doi:10.1038/cr.2017.14429160297
  • Rice C, Shastrula PK, Kossenkov AV, et al. Structural and functional analysis of the human POT1-TPP1 telomeric complex. Nat Commun. 2017;8(1):14928. doi:10.1038/ncomms1492828393830
  • Huang C, Dai X, Chai W. Human Stn1 protects telomere integrity by promoting efficient lagging-strand synthesis at telomeres and mediating C-strand fill-in. Cell Res. 2012;22(12):1681. doi:10.1038/cr.2012.13222964711
  • Rice C, Skordalakes E. Structure and function of the telomeric CST complex. Comput Struct Biotechnol J. 2016;14:161–167. doi:10.1016/j.csbj.2016.04.00227239262
  • Levy MZ, Allsopp RC, Futcher AB, Greider CW, Harley CB. Telomere end-replication problem and cell aging. J Mol Biol. 1992;225(4):951–960. doi:10.1016/0022-2836(92)90096-31613801
  • Shay JW. Telomeres and aging. Curr Opin Cell Biol. 2018;52:1–7. doi:10.1016/j.ceb.2017.12.00129253739
  • Flores I, Canela A, Vera E, Tejera A, Cotsarelis G, Blasco MA. The longest telomeres: a general signature of adult stem cell compartments. Genes Dev. 2008;22(5):654–667. doi:10.1101/gad.45100818283121
  • Blasco MA. The epigenetic regulation of mammalian telomeres. Nat Rev Genet. 2007;8(4):299. doi:10.1038/nrg204717363977
  • Martínez P, Blasco MA. Role of shelterin in cancer and aging. Aging Cell. 2010;9(5):653–666. doi:10.1111/j.1474-9726.2010.00596.x20569239
  • Blasco MA. Telomere length, stem cells and aging. Nat Chem Biol. 2007;3(10):640. doi:10.1038/nchembio.2007.3817876321
  • Xin H, Liu D, Songyang Z. The telosome/shelterin complex and its functions. Genome Biol. 2008;9(9):232. doi:10.1186/gb-2008-9-9-23218828880
  • Mir SM, Samadian E, Alijanpour S, Khoshbin Khoshnazar A, Haghighatfard H, Sadeghi SH. Impact of Ionizing Radiation on the Expression of CDC25A Phosphatase (in vivo). Medical Laboratory Journal. 2016;10(5):22–26. doi:10.18869/acadpub.mlj.10.5.22
  • Yu Y, Tan R, Ren Q, et al. POT1 inhibits the efficiency but promotes the fidelity of nonhomologous end joining at non-telomeric DNA regions. Aging (Albany NY). 2017;9(12):2529. doi:10.18632/aging.10133929227966
  • Smogorzewska A, van Steensel B, Bianchi A, et al. Control of human telomere length by TRF1 and TRF2. Mol Cell Biol. 2000;20(5):1659–1668. doi:10.1128/MCB.20.5.1659-1668.200010669743
  • Ancelin K, Brunori M, Bauwens S, et al. Targeting assay to study the cis functions of human telomeric proteins: evidence for inhibition of telomerase by TRF1 and for activation of telomere degradation by TRF2. Mol Cell Biol. 2002;22(10):3474–3487. doi:10.1128/MCB.22.10.3474-3487.200211971978
  • Sfeir A, Kosiyatrakul ST, Hockemeyer D, et al. Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell. 2009;138(1):90–103. doi:10.1016/j.cell.2009.06.02119596237
  • Nakamura M, Zhou XZ, Kishi S, Kosugi I, Tsutsui Y, Lu KP. A specific interaction between the telomeric protein Pin2/TRF1 and the mitotic spindle. Curr Biol. 2001;11(19):1512–1516. doi:10.1016/S0960-9822(01)00456-011591318
  • Hohensinner P, Kaun C, Buchberger E, et al. Age intrinsic loss of telomere protection via TRF1 reduction in endothelial cells. Biochimica Et Biophysica Acta (BBA)-Molecular Cell Research. 2016;1863(2):360–367. doi:10.1016/j.bbamcr.2015.11.03426658719
  • Van Steensel B, De Lange T. Control of telomere length by the human telomeric protein TRF1. Nature. 1997;385(6618):740–743. doi:10.1038/385740a09034193
  • Muñoz P, Blanco R, de Carcer G, et al. TRF1 controls telomere length and mitotic fidelity in epithelial homeostasis. Mol Cell Biol. 2012;150(3):481–494. doi:10.1128/MCB.01339-08
  • Diotti R, Loayza D. Shelterin complex and associated factors at human telomeres. Nucleus. 2011;2(2):119–135. doi:10.4161/nucl.2.2.1513521738835
  • Swanson MJ, Baribault ME, Israel JN, Bae NS. Telomere protein RAP1 levels are affected by cellular aging and oxidative stress. Biomed Rep. 2016;5(2):181–187. doi:10.3892/br.2016.70727446538
  • Martínez P, Thanasoula M, Muñoz P, et al. Increased telomere fragility and fusions resulting from TRF1 deficiency lead to degenerative pathologies and increased cancer in mice. Genes Dev. 2009;23(17):2060–2075. doi:10.1101/gad.54350919679647
  • Martínez P, Flores JM, Blasco MA. 53BP1 deficiency combined with telomere dysfunction activates ATR-dependent DNA damage response. J Cell Biol. 2012;197(2):283–300. doi:10.1083/jcb.20111012422508511
  • Porreca RM, Herrera-Moyano E, Skourti E, et al. TRF1 averts chromatin remodelling, recombination and replication dependent-break induced replication at mouse telomeres. Elife. 2020;9:e49817. doi:10.7554/eLife.4981731934863
  • Dimitrova N, Chen Y-CM, Spector DL, de Lange T. 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature. 2008;456(7221):524–528. doi:10.1038/nature0743318931659
  • Denchi EL, Celli G, De Lange T. Hepatocytes with extensive telomere deprotection and fusion remain viable and regenerate liver mass through endoreduplication. Genes Dev. 2006;20(19):2648–2653. doi:10.1101/gad.145360617015429
  • Martínez P, Ferrara‐Romeo I, Flores JM, Blasco MA. Essential role for the TRF 2 telomere protein in adult skin homeostasis. Aging Cell. 2014;13(4):656–668. doi:10.1111/acel.1222124725274
  • Munoz P, Blanco R, Flores JM, Blasco MA. XPF nuclease-dependent telomere loss and increased DNA damage in mice overexpressing TRF2 result in premature aging and cancer. Nat Genet. 2005;37(10):1063–1071. doi:10.1038/ng163316142233
  • Blanco R, Muñoz P, Flores JM, Klatt P, Blasco MA. Telomerase abrogation dramatically accelerates TRF2-induced epithelial carcinogenesis. Genes Dev. 2007;21(2):206–220. doi:10.1101/gad.40620717234886
  • Muñoz P, Blanco R, Blasco MA. Role of the TRF2 telomeric protein in cancer and aging. Cell Cycle. 2006;5(7):718–721. doi:10.4161/cc.5.7.263616582635
  • Okamoto K, Iwano T, Tachibana M, Shinkai Y. Distinct roles of TRF1 in the regulation of telomere structure and lengthening. J Biol Chem. 2008;283(35):23981–23988. doi:10.1074/jbc.M80239520018587156
  • Ye Jeffrey Z-S, de Lange T. TIN2 is a tankyrase 1 PARP modulator in the TRF1 telomere length control complex. Nat Genet. 2016;6(1):618–623. doi:10.1038/ng1360
  • Kim S-H, Kaminker P, Campisi J. TIN2, a new regulator of telomere length in human cells. Nat Genet. 1999;23(4):405. doi:10.1038/7050810581025
  • Frank AK, Tran DC, Qu RW, Stohr BA, Segal DJ, Xu L. The shelterin TIN2 subunit mediates recruitment of telomerase to telomeres. PLoS Genet. 2015;11(7):e1005410. doi:10.1371/journal.pgen.100541026230315
  • Samavarchi Tehrani S, Mahmoodzadeh Hosseini H, Yousefi T, et al. The crosstalk between trace elements with DNA damage response, repair, and oxidative stress in cancer. J Cell Biochem. 2019;120(2):1080–1105. doi:10.1002/jcb.27617
  • Tehrani SS, Karimian A, Parsian H, Majidinia M, Yousefi B. Multiple functions of long non‐coding RNAs in oxidative stress, DNA damage response and cancer progression. J Cell Biochem. 2018;119(1):223–236. doi:10.1002/jcb.2621728608608
  • Ibáñez-Cabellos JS, Pérez-Machado G, Seco-Cervera M, Berenguer-Pascual E, García-Giménez JL, Pallardó FV. Acute telomerase components depletion triggers oxidative stress as an early event previous to telomeric shortening. Redox Biol. 2018;14:398–408. doi:10.1016/j.redox.2017.10.00429055871
  • Chen L-Y, Zhang Y, Zhang Q, et al. Mitochondrial localization of telomeric protein TIN2 links telomere regulation to metabolic control. Mol Cell. 2012;47(6):839–850. doi:10.1016/j.molcel.2012.07.00222885005
  • Billard P, Poncet DA. Replication stress at telomeric and mitochondrial dna: common origins and consequences on aging. Int J Mol Sci. 2019;20(19):4959. doi:10.3390/ijms20194959
  • Sullivan LB, Santos JH, Chandel NS. Mitochondria and telomeres: the promiscuous roles of TIN2. Mol Cell. 2012;47(6):823–824. doi:10.1016/j.molcel.2012.09.00623020852
  • Lee JH, Jung M, Hong J, Kim MK, Chung IK. Loss of RNA-binding protein HuR facilitates cellular senescence through posttranscriptional regulation of TIN2 mRNA. Nucleic Acids Res. 2018;46(8):4271–4285. doi:10.1093/nar/gky22329584879
  • Kuimov A. Polypeptide components of telomere nucleoprotein complex. Biochemistry (Moscow). 2004;69(2):117–129. doi:10.1023/B:BIRY.0000018941.81962.1c15000677
  • Smogorzewska A, de Lange T. Regulation of telomerase by telomeric proteins. Annu Rev Biochem. 2004;73(1):177–208. doi:10.1146/annurev.biochem.73.071403.16004915189140
  • Loayza D, De Lange T. POT1 as a terminal transducer of TRF1 telomere length control. Nature. 2003;423(6943):1013. doi:10.1038/nature0168812768206
  • Lee J, Okumus B, Kim D, Ha T. Extreme conformational diversity in human telomeric DNA. Proc Natl Acad Sci. 2005;102(52):18938–18943. doi:10.1073/pnas.050614410216365301
  • Baumann P, Price C. Pot1 and telomere maintenance. FEBS Lett. 2010;584(17):3779–3784. doi:10.1016/j.febslet.2010.05.02420493859
  • Han X, Liu D, Zhang Y, et al. Akt regulates TPP 1 homodimerization and telomere protection. Aging Cell. 2013;12(6):1091–1099. doi:10.1111/acel.1213723862686
  • Colgin LM, Baran K, Baumann P, Cech TR, Reddel RR. Human POT1 facilitates telomere elongation by telomerase. Curr Biol. 2003;13(11):942–946. doi:10.1016/S0960-9822(03)00339-712781132
  • Liu D, Safari A, O’Connor MS, et al. PTOP interacts with POT1 and regulates its localization to telomeres. Nat Cell Biol. 2004;6(7):673. doi:10.1038/ncb114215181449
  • Guo X, Deng Y, Lin Y, et al. Dysfunctional telomeres activate an ATM‐ATR‐dependent DNA damage response to suppress tumorigenesis. EMBO J. 2007;26(22):4709–4719. doi:10.1038/sj.emboj.760189317948054
  • Hockemeyer D, Daniels J-P, Takai H, de Lange T. Recent expansion of the telomeric complex in rodents: two distinct POT1 proteins protect mouse telomeres. Cell. 2006;126(1):63–77. doi:10.1016/j.cell.2006.04.04416839877
  • Jones M, Bisht K, Savage SA, Nandakumar J, Keegan CE, Maillard I. The shelterin complex and hematopoiesis. J Clin Invest. 2016;126(5):1621–1629. doi:10.1172/JCI8454727135879
  • Wu L, Multani AS, He H, et al. Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell. 2006;126(1):49–62. doi:10.1016/j.cell.2006.05.03716839876
  • Denchi EL, de Lange T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature. 2007;448(7157):1068. doi:10.1038/nature0606517687332
  • Wang Y, Shen M-F, Chang S. Essential roles for Pot1b in HSC self-renewal and survival. Blood. 2011;118(23):6068–6077. doi:10.1182/blood-2011-06-36152721948176
  • Hosokawa K, MacArthur BD, Ikushima YM, et al. The telomere binding protein Pot1 maintains haematopoietic stem cell activity with age. Nat Commun. 2017;8(1):1–15.28232747
  • Hosokawa K, MacArthur BD, Ikushima YM, et al. The telomere binding protein Pot1 maintains haematopoietic stem cell activity with age. Nat Commun. 2017;8(1):804.28986560
  • Kibe T, Osawa GA, Keegan CE, De Lange T. Telomere protection by TPP1 is mediated by POT1a and POT1b. Mol Cell Biol. 2010;30(4):1059–1066. doi:10.1128/MCB.01498-0919995905
  • Patel T, Vasan R, Gupta D, Patel J, Trivedi M. Shelterin proteins and cancer. Asian Pac J Cancer Prev. 2015;16(8):3085–3090. doi:10.7314/APJCP.2015.16.8.308525921101
  • Zhong FL, Batista LF, Freund A, Pech MF, Venteicher AS, Artandi SE. TPP1 OB-fold domain controls telomere maintenance by recruiting telomerase to chromosome ends. Cell. 2012;150(3):481–494. doi:10.1016/j.cell.2012.07.01222863003
  • Nandakumar J, Bell CF, Weidenfeld I, Zaug AJ, Leinwand LA, Cech TR. The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature. 2012;492(7428):285.23103865
  • Xin H, Liu D, Wan M, et al. TPP1 is a homologue of ciliate TEBP-β and interacts with POT1 to recruit telomerase. Nature. 2007;445(7127):559–562. doi:10.1038/nature0546917237767
  • Zhang Y, Chen L-Y, Han X, et al. Phosphorylation of TPP1 regulates cell cycle-dependent telomerase recruitment. Proc Natl Acad Sci. 2013;110(14):5457–5462. doi:10.1073/pnas.121773311023509301
  • Chen C, Gu P, Wu J, et al. Structural insights into POT1-TPP1 interaction and POT1 C-terminal mutations in human cancer. Nat Commun. 2017;8(1):1–15. doi:10.1038/s41467-016-0009-628232747
  • Else T, Theisen BK, Wu Y, et al. Tpp1/Acd maintains genomic stability through a complex role in telomere protection. Chromosome Res. 2007;15(8):1001. doi:10.1007/s10577-007-1175-518185984
  • Toiber D, Sebastian C, Mostoslavsky R. Characterization of Nuclear Sirtuins: Molecular Mechanisms and Physiological Relevance. Histone Deacetylases: The Biology and Clinical Implication. Springer; 2011:189–224.
  • Chen H, Liu X, Zhu W, et al. SIRT1 ameliorates age-related senescence of mesenchymal stem cells via modulating telomere shelterin. Front Aging Neurosci. 2014;6:103. doi:10.3389/fnagi.2014.0010324917814
  • Nandakumar J, Bell CF, Weidenfeld I, Zaug AJ, Leinwand LA, Cech TR. The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature. 2012;492(7428):285–289.23103865
  • Sexton AN, Regalado SG, Lai CS, et al. Genetic and molecular identification of three human TPP1 functions in telomerase action: recruitment, activation, and homeostasis set point regulation. Genes Dev. 2014;28(17):1885–1899. doi:10.1101/gad.246819.11425128433
  • Tejera AM, d’Alcontres MS, Thanasoula M, et al. TPP1 is required for TERT recruitment, telomere elongation during nuclear reprogramming, and normal skin development in mice. Dev Cell. 2010;18(5):775–789. doi:10.1016/j.devcel.2010.03.01120493811
  • Bae NS, Baumann P. A RAP1/TRF2 complex inhibits nonhomologous end-joining at human telomeric DNA ends. Mol Cell. 2007;26(3):323–334. doi:10.1016/j.molcel.2007.03.02317499040
  • Martinez P, Thanasoula M, Carlos AR, et al. Mammalian Rap1 controls telomere function and gene expression through binding to telomeric and extratelomeric sites. Nat Cell Biol. 2010;12(8):768.20622869
  • Chen Y, Rai R, Zhou Z-R, et al. A conserved motif within RAP1 has diversified roles in telomere protection and regulation in different organisms. Nat Struct Mol Biol. 2011;18(2):213. doi:10.1038/nsmb.197421217703
  • Li B, Oestreich S, De Lange T. Identification of human Rap1: implications for telomere evolution. Cell. 2000;101(5):471–483. doi:10.1016/S0092-8674(00)80858-210850490
  • Pardo B, Marcand S. Rap1 prevents telomere fusions by nonhomologous end joining. EMBO J. 2005;24(17):3117–3127. doi:10.1038/sj.emboj.760077816096640
  • Sfeir A, Kabir S, van Overbeek M, Celli GB, de Lange T. Loss of Rap1 induces telomere recombination in the absence of NHEJ or a DNA damage signal. Science. 2010;327(5973):1657–1661. doi:10.1126/science.118510020339076
  • Celli GB, de Lange T. DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat Cell Biol. 2005;7(7):712. doi:10.1038/ncb127515968270
  • Johnson AN, Weil PA. Identification of a transcriptional activation domain in yeast repressor activator protein 1 (Rap1) using an altered DNA-binding specificity variant. J Biol Chem. 2017;292(14):5705–5723. doi:10.1074/jbc.M117.77918128196871
  • Martinez P, Thanasoula M, Carlos AR, et al. Mammalian Rap1 controls telomere function and gene expression through binding to telomeric and extratelomeric sites. Nat Cell Biol. 2010;12(8):768–780.20622869
  • Donate LE, Blasco MA. Telomeres in cancer and aging. Philos Trans R Soc B. 2011;366(1561):76–84. doi:10.1098/rstb.2010.0291
  • Platt JM, Ryvkin P, Wanat JJ, et al. Rap1 relocalization contributes to the chromatin-mediated gene expression profile and pace of cell senescence. Genes Dev. 2013;27(12):1406–1420. doi:10.1101/gad.218776.11323756653
  • Ganapathi M, Palumbo MJ, Ansari SA, et al. Extensive role of the general regulatory factors, Abf1 and Rap1, in determining genome-wide chromatin structure in budding yeast. Nucleic Acids Res. 2010;39(6):2032–2044. doi:10.1093/nar/gkq116121081559
  • Yarragudi A, Miyake T, Li R, Morse RH. Comparison of ABF1 and RAP1 in chromatin opening and transactivator potentiation in the budding yeast Saccharomyces cerevisiae. Mol Cell Biol. 2004;24(20):9152–9164. doi:10.1128/MCB.24.20.9152-9164.200415456886
  • Lototska L, Yue JX, Li J, et al. Human RAP 1 specifically protects telomeres of senescent cells from DNA damage. EMBO Rep. 2020;21(4). doi:10.15252/embr.201949076.
  • Song S, Johnson FB. Epigenetic mechanisms impacting aging: a focus on histone levels and telomeres. Genes. 2018;9(4):201. doi:10.3390/genes9040201
  • Luo K, Vega-Palas MA, Grunstein M. Rap1–Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast. Genes Dev. 2002;16(12):1528–1539. doi:10.1101/gad.98880212080091
  • Zhang Y, Chiu S, Liang X, et al. Rap1-mediated nuclear factor-kappaB (NF-κB) activity regulates the paracrine capacity of mesenchymal stem cells in heart repair following infarction. Cell Death Discovery. 2015;1(1):15007. doi:10.1038/cddiscovery.2015.727551443
  • Song S, Perez JV, Svitko W, et al. Rap1‐mediated nucleosome displacement can regulate gene expression in senescent cells without impacting the pace of senescence. Aging Cell. 2019;e13061.31742863
  • Lian S, Meng L, Liu C, et al. PRL-3 activates NF-κB signaling pathway by interacting with RAP1. Biochem Biophys Res Commun. 2013;430(1):196–201. doi:10.1016/j.bbrc.2012.11.03623178297
  • Teo H, Ghosh S, Luesch H, et al. Telomere-independent Rap1 is an IKK adaptor and regulates NF-κB-dependent gene expression. Nat Cell Biol. 2010;12(8):758–767.20622870
  • Teo H, Ghosh S, Luesch H, et al. Telomere-independent Rap1 is an IKK adaptor and regulates NF-κB-dependent gene expression. Nat Cell Biol. 2010;12(8):758.20622870
  • Tilstra JS, Clauson CL, Niedernhofer LJ, Robbins PD. NF-κB in aging and disease. Aging Dis. 2011;2(6):449.22396894
  • Pramanik KC, Makena MR, Bhowmick K, Pandey MK. Advancement of NF-κB signaling pathway: a novel target in pancreatic Cancer. Int J Mol Sci. 2018;19(12):3890. doi:10.3390/ijms19123890