141
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Resistance Training Modulates the Matrix Metalloproteinase-2 Activity in Different Trabecular Bones in Aged Rats

ORCID Icon, , , , , , , ORCID Icon & ORCID Icon show all
Pages 71-81 | Published online: 08 Jan 2021

References

  • Marqueti RC, Durigan JLQ, Oliveira AJS, et al. Effects of aging and resistance training in rat tendon remodeling. FASEB J. 2018;32(1):353–368. doi:10.1096/fj.201700543r28899880
  • Ukon Y, Makino T, Kodama J, et al. Molecular-Based Treatment Strategies for Osteoporosis: A Literature Review. Int J Mol Sci. 2019;20(10):10. doi:10.3390/ijms20102557
  • Vashishth D. The role of the collagen matrix in skeletal fragility. Current Osteoporosis Reports. 2007;5(2):62–66. doi:10.1007/s11914-007-0004-217521507
  • Kular JK, Basu S, Sharma RI. The extracellular matrix: structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J Tissue Eng. 2014;5:2041731414557112.25610589
  • Haj J, Haj Khalil T, Falah M, Zussman E, Srouji S. An ECM-Mimicking, Mesenchymal Stem Cell-Embedded Hybrid Scaffold for Bone Regeneration. Biomed Res Int. 2017;2017:8591073.29270436
  • Kok MO, Rodrigues A, Silva AP, de Haan S. The emergence and current performance of a health research system: lessons from Guinea Bissau. Health Res Policy Syst. 2012;10:5.22321566
  • Gentili C, Cancedda R. Cartilage and bone extracellular matrix. Curr Pharm Des. 2009;15(12):1334–1348.19355972
  • Krane SM, Inada M. Matrix metalloproteinases and bone. Bone. 2008;43(1):7–18.18486584
  • Freitas-Rodriguez S, Folgueras AR, Lopez-Otin C. The role of matrix metalloproteinases in aging: tissue remodeling and beyond. Biochim Biophys Acta Mol Cell Res. 2017;1864(11 Pt A):2015–2025.28499917
  • Paiva KBS, Granjeiro JM. Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair. Prog Mol Biol Transl Sci. 2017;148:203–303.28662823
  • Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. 2007;8(3):221–233. doi:10.1038/nrm212517318226
  • Paiva KBS, Granjeiro JM. Bone tissue remodeling and development: focus on matrix metalloproteinase functions. Arch Biochem Biophys. 2014;561:74–87. doi:10.1016/j.abb.2014.07.03425157440
  • Becerikli M, Jaurich H, Schira J, et al. Age-dependent alterations in osteoblast and osteoclast activity in human cancellous bone. J Cell Mol Med. 2017;21(11):2773–2781. doi:10.1111/jcmm.1319228444839
  • Yuan Y, Chen X, Zhang L, et al. The roles of exercise in bone remodeling and in prevention and treatment of osteoporosis. Prog Biophys Mol Biol. 2016;122(2):122–130. doi:10.1016/j.pbiomolbio.2015.11.00526657214
  • Shiguemoto GE, Prestes J, Leite RD, et al. Effects of resistance training on matrix metalloproteinase-2 activity and biomechanical and physical properties of bone in ovariectomized and intact rats. Scand J Med Sci Sports. 2012;22(5):607–617. doi:10.1111/j.1600-0838.2010.01284.x21362057
  • Souza MVC, Lino ADS, Ruffoni LGD, et al. Resistance training and hormone replacement increase MMP-2 activity, quality and quantity of bone in ovariectomized rats. Motriz: Revista De Educação Física. 2017;23:4.
  • Nyman JS, Lynch CC, Perrien DS, et al. Differential effects between the loss of MMP-2 and MMP-9 on structural and tissue-level properties of bone. J Bone Miner Res. 2011;26(6):1252–1260. doi:10.1002/jbmr.32621611966
  • Liang HPH, Xu J, Xue M, Jackson C. Matrix metalloproteinases in bone development and pathology: current knowledge and potential clinical utility. <![CDATA[Metalloproteinases in Medicine]]>. 2016;3:93–102. doi:10.2147/MNM.S92187
  • Quinn R. Comparing rat’s to human’s age: how old is my rat in people years? Nutrition. 2005;21(6):775. doi:10.1016/j.nut.2005.04.00215925305
  • de Sousa Neto IV, Tibana RA, da Cunha Nascimento D, et al. Effects of Resistance Training Volume on MMPs in Circulation, Muscle and Adipose Tissue. Int J Sports Med. 2017;38(4):307–313. doi:10.1055/s-0042-12319228219105
  • Hornberger Jr. TA, Farrar RP. Physiological hypertrophy of the FHL muscle following 8 weeks of progressive resistance exercise in the rat. Can J Appl Physiol. 2004;29(1):16–31. doi:10.1139/h04-00215001801
  • de Sousa Neto IV, Durigan JLQ, Guzzoni V, et al. Effects of Resistance Training on Matrix Metalloproteinase Activity in Skeletal Muscles and Blood Circulation During Aging. Front Physiol. 2018;9:190. doi:10.3389/fphys.2018.0019029593554
  • de Sousa Neto IV, Carvalho MM, Marqueti RC, et al. Proteomic changes in skeletal muscle of aged rats in response to resistance training. Cell Biochem Funct. 2020;2:12–68.
  • Hong AR, Kim SW. Effects of Resistance Exercise on Bone Health. Endocrinology and Metabolism. 2018;33(4):435–444. doi:10.3803/EnM.2018.33.4.43530513557
  • Ikedo A, Kido K, Ato S, et al. The effects of resistance training on bone mineral density and bone quality in type 2 diabetic rats. Physiol Rep. 2019;7(6):e14046. doi:10.14814/phy2.1404630916457
  • Burr DB. Muscle strength, bone mass, and age-related bone loss. J Bone Miner Res. 1997;12(10):1547–1551. doi:10.1359/jbmr.1997.12.10.15479333114
  • Hart NH, Nimphius S, Rantalainen T, Ireland A, Siafarikas A, Newton RU. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action. J Musculoskelet Neuronal Interact. 2017;17(3):114–139.28860414
  • Chen H, Zhou X, Fujita H, Onozuka M, Kubo K-Y. Age-related changes in trabecular and cortical bone microstructure. Int J Endocrinol. 2013;2013:213234. doi:10.1155/2013/21323423573086
  • Chen J, Zhou J, Li F, et al. Expression of MMP-2 and TIMP-1 during rapid maxillary expansion in rats. Arch Oral Biol. 2017;76:30–35. doi:10.1016/j.archoralbio.2017.01.00228092867
  • Lo Presti R, Hopps E, Caimi G. Gelatinases and physical exercise: A systematic review of evidence from human studies. Medicine. 2017;96(37):e8072. doi:10.1097/MD.000000000000807228906407
  • Sobue T, Hakeda Y, Kobayashi Y, et al. Tissue inhibitor of metalloproteinases 1 and 2 directly stimulate the bone-resorbing activity of isolated mature osteoclasts. J Bone Miner Res. 2001;16(12):2205–2214. doi:10.1359/jbmr.2001.16.12.220511760833
  • Wang I-NE, Mitroo S, Chen FH, Lu HH, Doty SB. Age-dependent changes in matrix composition and organization at the ligament-to-bone insertion. J Orthop Res. 2006;24(8):1745–1755. doi:10.1002/jor.2014916779829
  • Hatori K, Sasano Y, Takahashi I, Kamakura S, Kagayama M, Sasaki K. Osteoblasts and osteocytes express MMP2 and −8 and TIMP1, −2, and −3 along with extracellular matrix molecules during appositional bone formation. Anat Rec a Discov Mol Cell Evol Biol. 2004;277(2):262–271.15052653
  • Vashishth D, Verborgt O, Divine G, Schaffler MB, Fyhrie DP. Decline in osteocyte lacunar density in human cortical bone is associated with accumulation of microcracks with age. Bone. 2000;26(4):375–380.10719281
  • Fonseca H, Moreira-Goncalves D, Esteves JL, et al. Voluntary exercise has long-term in vivo protective effects on osteocyte viability and bone strength following ovariectomy. Calcif Tissue Int. 2011;88(6):443–454.21416225
  • Tong X, Chen X, Zhang S, et al. The Effect of Exercise on the Prevention of Osteoporosis and Bone Angiogenesis. Biomed Res Int. 2019;2019:8171897.31139653
  • Kawamata H, Nakashiro K, Uchida D, Harada K, Yoshida H, Sato M. Possible contribution of active MMP2 to lymph-node metastasis and secreted cathepsin L to bone invasion of newly established human oral-squamous-cancer cell lines. Int J Cancer. 1997;70(1):120–127.8985100
  • Prodinger PM, Foehr P, Burklein D, et al. Whole bone testing in small animals: systematic characterization of the mechanical properties of different rodent bones available for rat fracture models. Eur J Med Res. 2018;23(1):8.29444703
  • Hughes JM, Charkoudian N, Barnes JN, Morgan BJ. Revisiting the Debate: does Exercise Build Strong Bones in the Mature and Senescent Skeleton? Front Physiol. 2016;7:369.27679578
  • Umemura Y, Ishiko T, Yamauchi T, Kurono M, Mashiko S. Five jumps per day increase bone mass and breaking force in rats. J Bone Miner Res. 1997;12(9):1480–1485.9286765
  • Jimenez MJ, Balbin M, Alvarez J, et al. A regulatory cascade involving retinoic acid, Cbfa1, and matrix metalloproteinases is coupled to the development of a process of perichondrial invasion and osteogenic differentiation during bone formation. J Cell Biol. 2001;155(7):1333–1344.11748248
  • Galea GL, Meakin LB, Harris MA, et al. Old age and the associated impairment of bones’ adaptation to loading are associated with transcriptomic changes in cellular metabolism, cell-matrix interactions and the cell cycle. Gene. 2017;599:36–52.27840164