158
Views
10
CrossRef citations to date
0
Altmetric
Original Research

Molecular Changes in Circulating microRNAs’ Expression and Oxidative Stress in Adults with Mild Cognitive Impairment: A Biochemical and Molecular Study

, & ORCID Icon
Pages 57-70 | Published online: 08 Jan 2021

References

  • Jiang T, Yu JT, Tan L. Novel disease-modifying therapies for Alzheimer’s disease. J Alzheimers Dis. 2012;31:475–492. doi:10.3233/JAD-2012-12064022669013
  • Petersen RC, Caracciolo B, Brayne C, Gauthier S, Jelic V, Fratiglioni L. Mild cognitive impairment: a concept in evolution. J Intern Med. 2014;275:214–228. doi:10.1111/joim.1219024605806
  • Grundman M, Petersen RC, Ferris SH, et al. Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Arch Neurol. 2004;61:59–66. doi:10.1001/archneur.61.1.5914732621
  • Serrano CM, Dillon C, Leis A, Taragano FE, Allegri RF. Mild cognitive impairment: risk of dementia accord ing to subtypes. Actas Esp Psiquiatr. 2013;41:330–339.24203505
  • Manly JJ, Tang MX, Schupf N, Stern Y, Vonsattel JP, Mayeux R. Frequency and course of mild cognitive impairment in a multiethnic community. Ann Neurol. 2008;63:494–506. doi:10.1002/ana.2132618300306
  • Plassman BL, Langa KM, Fisher GG, et al. Prevalence of cognitive impairment without dementia in the United States. Ann Intern Med. 2008;148:427–434. doi:10.7326/0003-4819-148-6-200803180-0000518347351
  • Tervo S, Kivipelto M, Hanninen T, et al. Incidence and risk factors for mild cognitive impairment: a population-based three-year follow-up study of cognitively healthy elderly subjects. Dement Geriatr Cogn Disord. 2004;17:196–203. doi:10.1159/00007635614739544
  • Petersen RC, Roberts RO, Knopman DS, et al. Mild cognitive impairment: ten years later. Arch Neurol. 2009;66:1447–1455.20008648
  • Tighe SK, OishiK, Mori S, et al. Diffusion tensor imaging of neuropsychiatric symptoms in mild cognitive impairment and Alzheimer’s dementia. J Neuropsychiatry Clin Neurosci. 2012;24:484–488. doi:10.1176/appi.neuropsych.1112037523224456
  • Amlien IK, Fjell AM, Walhovd KB, et al. Mild cognitive impairment: cerebrospinal fluid tau biomarker pathologic levels and longitudinal changes in white matter integrity. Radiology. 2013;266:295–303. doi:10.1148/radiol.1212031923151827
  • Zheng T, Qin L, Chen B, et al. Association of plasma DPP4 activity with mild cognitive impairment in elderly patients with type 2 diabetes: results from the GDMD study in China. Diabetes Care. 2016;39:1594–1601. doi:10.2337/dc16-031627371673
  • Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Rev Neurosci. 2001;24:677–736. doi:10.1146/annurev.neuro.24.1.677
  • Qin XY, Cao C, Cawley NX, et al. Decreased peripheral brain-derived neurotrophic factor levels in Alzheimer’s disease: a meta-analysis study (N=7277). Mol Psychiatry. 2017;22:312–320. doi:10.1038/mp.2016.6227113997
  • Krabbe KS, Nielsen AR, Krogh-Madsen R, et al. Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia. 2007;50:431–438. doi:10.1007/s00125-006-0537-417151862
  • Herskovits AZ, Guarente L. SIRT1 in neurodevelopment and brain senescence. Neuron. 2014;81:471–483. doi:10.1016/j.neuron.2014.01.02824507186
  • Tapia-Arancibia L, Aliaga E, Silhol M, Arancibia S. New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Res Rev. 2008;59:201–220. doi:10.1016/j.brainresrev.2008.07.00718708092
  • Nagata T, Shinagawa S, Nukariya K, Yamada H, Nakayama K. Association between BDNF polymorphism (Val66Met) and executive function in patients with amnestic mild cognitive impairment or mild Alzheimer disease. Dement Geriatr Cogn Disord. 2012;33(266–272):684. doi:10.1159/000339358
  • Bonda DJ, Lee HG, Camins A, et al. The sirtuin pathway in ageing and Alzheimer disease: mechanistic and therapeutic considera tions. Lancet Neurol. 2011;10:275–279. doi:10.1016/S1474-4422(11)70013-821349442
  • Ishibashi Y, Matsui T, Maeda S, Higashimoto Y, Yamagishi S. Advanced glycation end products evoke endothelial cell damage by stimulating soluble dipeptidyl peptidase-4 production and its interaction with mannose 6-phosphate/insulin-like growth factor II receptor. Cardiovasc Diabetol. 2013;12:125. doi:10.1186/1475-2840-12-12523984879
  • Wu A, Ying Z, Gomez-Pinilla F. The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. Eur J Neurosci. 2004;19:1699–1707. doi:10.1111/j.1460-9568.2004.03246.x15078544
  • Zheng TP, Yang F, Gao Y, et al. Increased plasma DPP4 activities predict new-onset atherosclerosis in association with its proinflammatory effects in Chinese over a four year period: a prospective study. Atherosclerosis. 2014;235:619–624. doi:10.1016/j.atherosclerosis.2014.05.95624968315
  • Baierle M, Nascimento SN, Moro AM, et al. Relationship between inflammation and oxidative stress and cognitive decline in the institutionalized elderly. Oxid Med Cell Longev. 2015;2015:804198. doi:10.1155/2015/80419825874023
  • Gaman AM, Uzoni A, Popa-Wagner A, Andrei A, Petcu EB. The role of oxidative stress in etiopathogenesis of chemotherapy induced cognitive Impairment (CICI)-”Chemobrain”. Aging Dis. 2016;7(3):307–317. doi:10.14336/AD.2015.102227330845
  • Hermann DM, Doeppner TR, Popa-Wagner A. Opportunities and limitations of vascular risk factor models in studying plasticity-promoting and restorative ischemic stroke therapies. Neural Plast. 2019;Nov(2019):9785476.
  • Zagrean AM, Hermann DM, Opris I, Zagrean L, Popa-Wagner A. Multicellular crosstalk between exosomes and the neurovascular unit after cerebral ischemia. Therapeutic Implications Front Neurosci. 2018;6(12):811.
  • AGriñan-Ferré C, Corpas R, Puigoriol-Illamola D, Palomera-Avalos V, Sanfeliu C, Pallàs M. Understanding epigenetics in the neurodegeneration of alzheimer’s disease: SAMP8 mouse model. J Alzheimers Dis. 2018;62:943–963. doi:10.3233/JAD-17066429562529
  • Chung HY, Kim DH, Lee EK, et al. Redefining chronic inflammation in aging and age-related diseases: proposal of the senoinflammation concept. Aging Dis. 2019;10:367–382. doi:10.14336/AD.2018.032431011483
  • Petersen KS, Smith C. Ageing-associated oxidative stress and inflammation are alleviated by products from grapes. Oxidative Med Cell Longev. 2016;2016:1–12. doi:10.1155/2016/6236309
  • Escobar KA, Cole NH, Mermier CM, VanDusseldorp TA. Autophagy and aging: maintaining the proteome through exercise and caloric restriction. Aging Cell. 2019;18.
  • Pourmemar E, Majdi A, Haramshahi M, Talebi M, Karimi P, Sadigh-Eteghad S. Intranasal cerebrolysin attenuates learning and memory impairments in D-galactose-induced senescence in mice. Exp Gerontol. 2017;87:16–22. doi:10.1016/j.exger.2016.11.01127894939
  • Yu Y, Feng L, Li J, et al. The alteration of autophagy and apoptosis in the hippocampus of rats with natural aging-dependent cognitive deficits. Behav Brain Res. 2017;334:155–162. doi:10.1016/j.bbr.2017.07.00328688896
  • Xie B, Zhou H, Zhang R, et al. Serum miR-206 and miR-132 as potential circulating biomarkers for mild cognitive impairment. J Alzheimers Dis. 2015;45(3):721–731. doi:10.3233/JAD-14284725589731
  • Muller M, Kuiperij HB, Versleijen AA, et al. Validation of microRNAs in cerebrospinal fluid as biomarkers for different forms of dementia in a multicenter study. J Alzheimers Dis. 2016;52:1321–1333. doi:10.3233/JAD-16003827104900
  • Najaraj S, Laskowska-Kaszub K, Dębski KJ, et al. Profile of 6 microRNA in blood plasma distinguish early stage Alzheimer’s disease patients from non-demented subjects. Oncotarget. 2017;8:16122–16143. doi:10.18632/oncotarget.1510928179587
  • Martinez B, Peplow PV. MicroRNAs as diagnostic and therapeutic tools for Alzheimer’s disease: advances and limitations. Neural Regen Res. 2019;14(2):242–255. doi:10.4103/1673-5374.24478430531004
  • Miya Shaik M, Tamargo IA, Abubakar MB, Kamal MA, Greig NH, Gan SH. The role of microRNAs in Alzheimer’s Disease and their therapeutic potentials. Genes (Basel). 2018;9(4):174. doi:10.3390/genes9040174
  • Melo CA, Melo SA. Biogenesis and physiology of microRNAs In: Fabbri M, editor. Non-Coding RNAs and Cancer. NewYork, NY, USA: Springer; 2014:5–24.
  • Deng S, Wang H, Jia C, et al. MicroRNA-146a induces lineage-negative bone marrow cell apoptosis and senescence by targeting polo-like kinase 2 expression. Arterioscler Thromb Vasc Biol. 2017;37:280–290. doi:10.1161/atvbaha.116.30837827908889
  • Ansari A, Maffioletti E, Milanesi E, et al. miR-146a and miR-181a are involved in the progression of mild cognitive impairment to Alzheimer’s disease. Neurobiol Aging. 2019;82:102–109. doi:10.1016/j.neurobiolaging.2019.06.00531437718
  • Petersen RC, Roberts RO, Knopman DS, et al. Mild cognitive impairment: ten years later. Arch Neurol. 2009;66(599):1447–1455.20008648
  • Sullivan K. Estimates of interrater reliability for the Logical Memory subtest of the Wechsler Memory Scale- Revised. J Clin Exp Neuropsychol. 1996;18:707–712. doi:10.1080/016886396084082938941855
  • Liu DH, Zhang XQ, Chen B, et al. Neurophysiologic tests to distinguish MCI and mildAD. J Brain Nerv Dis. 2008;16:223–226.
  • Dai XY, Ryan JJ, Paolo AM, Harrington RG. Factor analysis of the mainland Chinese version of the Wechsler Adult Intelligence Scale (WAIS-RC) in a brain-damaged sample. Int J Neurosci. 1990;55:107–111. doi:10.3109/002074590089859562084035
  • Katz S, Ford AB, Moskowitz RW, Jackson BA, Jaffe MW. Studies of illness in the aged. THE Index of ADL: a standardized measure of biological and psychosocial function. JAMA. 1963;185:914–919.14044222
  • Nasreddine ZS, Phillips NA, Bedirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695–699. doi:10.1111/j.1532-5415.2005.53221.x15817019
  • Folstein MF, Folstein SE, McHugh PR. Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–198.1202204
  • Petersen RC, Smith GE, Waring SC, et al. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56:303–308. doi:10.1001/archneur.56.3.30310190820
  • Porteri C, Frisoni GB. Biomarker-based diagnosis of mild cognitive impairment due to Alzheimer’s disease: how and what to tell. A kickstart to an ethical discussion. Front Aging Neurosci. 2014;6:41. doi:10.3389/fnagi.2014.0004124678299
  • Godfrey M. Majid DSA: renal handling of circulating nitrates in anesthetized dogs. Am J Physiol Renal Physiol. 1998;275(1):F68–F73. doi:10.1152/ajprenal.1998.275.1.F68
  • Tarpey MM, Fridovich I. Methods of detection of vascular reactive species: nitric oxide, super oxide, hydrogen peroxide, and peroxy nitrate. Circ Res. 2001;89:236–244. doi:10.1161/hh1501.094365
  • Sravani PV, Babu NK, Gopal KV, et al. Determination of oxidative stress in vitiligo by measuring superoxide dismutase and catalase levels in vitiliginous and non-vitiliginous skin. Indian J Dermatol Venereol Leprol. 2009;3:268–271.
  • Goth L. A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta. 1991;196:143–152. doi:10.1016/0009-8981(91)90067-M2029780
  • Aebi H. Catalase in vitro. Meth Enzymol. 1984;105:121–126.
  • Gabr SA, Al-Ghadir AH. Role of cellular oxidative stress and cytochrome c in the pathogenesis of psoriasis. Arch Dermatol Res. 2012;304(6):451–457. doi:10.1007/s00403-012-1230-822421888
  • Gabr SA, Alghadir AH. Prediction of fibrosis in hepatitis C patients: assessment using hydroxyproline and oxidative stress biomarkers. Virusdisease. 2014;25(1):91–100. doi:10.1007/s13337-013-0182-824426315
  • Zheng T, Gao Y, Baskota A, Chen T, Ran X, Tian H. Increased plasma DPP4 activity is predictive of prediabetes and type 2 diabetes onset in Chinese over a four-year period: result from the China National Diabetes and metabolic disorders study. J Clin Endocrinol Metab. 2014;99:E2330–334. doi:10.1210/jc.2014-148025029421
  • Zheng T, Chen T, Liu Y, Gao Y, Tian H. Increased plasma DPP4 activity predicts new-onset hypertension in Chinese over a 4-year period: possible associations with inflammation and oxidative stress. J Hum Hypertens. 2015;29:424–429. doi:10.1038/jhh.2014.11125411054
  • Al-Rawaf HA, Alghadir AH, Gabr SA. MicroRNAs as biomarkers of pain intensity in patients with chronic fatigue syndrome. Pain Pract. 2019;19(8):848–860. doi:10.1111/papr.1281731282597
  • Safari F, Hosseini H, Bayat M, Ranjbar A. Synthesis and evaluation of antimicrobial activity, cytotoxic and proapoptotic effects of novel spiro-4H-pyran derivatives. RSC Adv. 2019;9(43):24843–24851. doi:10.1039/C9RA03196K
  • Bermejo P, Martin-Arag´on S, Benedi J, et al. Peripheral levels of glutathione and protein oxidation as markers in the development of Alzheimer’s disease from mild cognitive impairment. FreeRadic Res. 2008;42:162–170.
  • Markesbery WR, Lovell MA. DNA oxidation in Alzheimer's disease. Antioxidants Redox Signal. 2006;8:2039–2045. doi:10.1089/ars.2006.8.2039
  • Nunomura A, Honda K, Takeda A, Hirai K, Zhu X, SmithMA PG. Oxidative damage to RNA in neurodegenerative diseases. J Biomed Biotechnol. 2006;(2006):1–6. doi:10.1155/JBB/2006/82323
  • Delibas N, Ozcankaya R, Altuntas I. Clinical importance of erythrocyte malondialdehyde levels as a marker for cognitive deterioration in patients with dementia of Alzheimer type: a repeated study in 5-year interval. Clin Biochem. 2002;32:137–141. doi:10.1016/S0009-9120(02)00287-4
  • Keller JN, Schmitt FA, Scheff SW, et al. Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology. 2005;64:1152–1156. doi:10.1212/01.WNL.0000156156.13641.BA15824339
  • Popa-Wagner A, Mitran S, Sivanesan S, Chang E, Buga AM. ROS and brain diseases: the good, the bad, and the ugly. Oxid Med Cell Longev. 2013;2013:963520. doi:10.1155/2013/96352024381719
  • Jellinger KA. Pathology and pathogenesis of vascular cognitive impairment-a critical update. Front Aging Neurosci. 2013;5:17. doi:10.3389/fnagi.2013.0001723596414
  • Cervellati C, Cremonini E, Bosi C, et al. Systemic oxidative stress in older patients with mild cognitive impairment or late onset Alzheimer’s disease. Curr Alzheimer Res. 2013;10(4):365–372. doi:10.2174/156720501131004000322950912
  • Wei G, Dawson VL, Zweier JL. Role of neuronal and endothelial nitric oxide synthase in nitric oxide generation in the brain following cerebral ischemia. Biochimica et Biophysica Acta. 1999;1455:23–24. doi:10.1016/S0925-4439(99)00051-4
  • Milstien S, Sakai N, Brew BJ, et al. Cerebrospinal fluid nitrite/nitrate levels in neurological diseases. J Neuro Chem. 1994;63(3):1178–1180. doi:10.1046/j.1471-4159.1994.63031178.x
  • Moncada S, Higgs EA. The discovery of nitric oxide and its role in vascular biology. Br J Pharmacol. 2006;147(suppl1):S193–201. doi:10.1038/sj.bjp.070645816402104
  • Boje KM, Arora PK. Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res. 1992;587:250–256. doi:10.1016/0006-8993(92)91004-X1381982
  • Moro MA, Darley-Usmar VM, Goodwin DA, et al. Paradoxical fate and biological action of peroxynitrite on human platelets. Proc Natl Acad Sci USA. 1994;91:6702–6706. doi:10.1073/pnas.91.14.67027517561
  • Rogers J, Luber-Narod J, Styren S, Civin WH. Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol Aging. 1988;9(4):339–349. doi:10.1016/S0197-4580(88)80079-43263583
  • Lee YJ, Han SB, Nam SY, Oh KW, Hong JT. Inflammation and Alzheimer’s disease. Arch Pharm Res. 2010;33:1539–1556.21052932
  • Marcus DL, Thomas C, Rodriguez C, et al. Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer’s disease. Exp Neurol. 1998;150:40–44. doi:10.1006/exnr.1997.67509514828
  • Omar RA, Chyan YJ, Andorn AC, Poeggeler B, Robakis NK, Pappolla MA. Increased expression but reduced activity of antioxidant enzymes in Alzheimer’s disease. J Alzheimers Dis. 1999;1:139–145. doi:10.3233/JAD-1999-130112213999
  • Ortiz GG, Pacheco Mois´es FP, Mireles-Ram´ırez M, et al. Oxidative stress: love and hate history in central nervous system. Adv Protein Chem Struct Biol. 2017;108:1–31.28427557
  • Revel F, Gilbert T, Roche S, et al. Influence of oxidative stress biomarkers on cognitive decline. J Alzheimers Dis. 2015;45:553–560. doi:10.3233/JAD-14179725589716
  • Irizarry MC, Raman R, Schwarzschild MA, et al. Plasma urate and progression of mild cognitive impairment. Neurodegener Dis. 2009;6:23–28. doi:10.1159/00017088319066433
  • Aquilano K, Baldelli S, Ciriolo MR. Glutathione: new roles in redox signaling for an old antioxidant. Front Pharmacol. 2014;5:196. doi:10.3389/fphar.2014.0019625206336
  • Nicotera P. Caspase requirement for neuronal apoptosis and neurodegeneration. IUBMB Life. 2000;49:421–425. doi:10.1080/15216540041027210902574
  • Porter AG, Janicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6:99–104. doi:10.1038/sj.cdd.440047610200555
  • Shah AJ, Epport K, Azen, et al. Progressive declines in neurocognitive function among survivors of hematopoietic stem cell transplantation for pediatric hematologic malignancies. J Ped Hematol Oncol. 2008;30:411–418. doi:10.1097/MPH.0b013e318168e750
  • D’Amelio M, Sheng M, Cecconi F. Caspase-3 in the central nervous system: beyond apoptosis. Trends Neurosci. 2012;35:700–709. doi:10.1016/j.tins.2012.06.00422796265
  • Robertson GS, Crocker SJ, Nicholson DW, Schulz JB. Neuroprotection by the inhibition of apoptosis. Brain Pathol. 2000;10:283–292. doi:10.1111/j.1750-3639.2000.tb00262.x10764048
  • Eichenbaum H. Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron. 2004;44:109–120. doi:10.1016/j.neuron.2004.08.02815450164
  • Liang HW, Qiu SF, Shen J, et al. Genistein attenuates oxidative stress and neuronal damage following transient global cerebral ischemia in rat hippocampus. Neurosci Lett. 2008;438:116–120. doi:10.1016/j.neulet.2008.04.05818467029
  • Rodriguez-Martinez E, Martinez F, Espinosa-Garcia MT, Maldonado P, Rivas-Arancibia S. Mitochondrial dysfunction in the hippocampus of rats caused by chronic oxidative stress. Neuroscience. 2013;252:384–395. doi:10.1016/j.neuroscience.2013.08.01823988432
  • Aisen PS. Serumbrain-derived neurotrophic factor and the risk for dementia. JAMA. 2014;311:1684–1685. doi:10.1001/jama.2014.312024756518
  • Gezen-Ak D, Dursun E, Hanagasi H, et al. BDNF, TNFalpha, HSP90, CFH, and IL-10 serum levels in patients with early or late onset Alzheimer’sdisease or mild cognitive impairment. J Alzheimers Dis. 2013;37:185–195. doi:10.3233/JAD-13049723948885
  • Laske C, Stellos K, Hoffmann N, et al. Higher BDNF serum levels predict slower cognitive decline in Alzheimer’s disease patients. Int J Neuropsychopharmacol. 2011;14:399–404. doi:10.1017/S146114571000100820860877
  • Faria MC, Gonc¸alves GS, Rocha NP, et al. Increased plasma levels of BDNF and inflammatory markers in Alzheimer’sdisease. J Psychiatr Res. 2014;53:166–172. doi:10.1016/j.jpsychires.2014.01.01924576746
  • Jeong H, et al. Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat Med. 2011;18:159–165. doi:10.1038/nm.255922179316
  • Zhang C, et al. Hormetic effect of panaxatriol saponins confers neuroprotection in PC12 cells and zebrafish through PI3K/AKT/mTOR and AMPK/SIRT1/FOXO3pathways. Sci Rep. 2017;7:41082. doi:10.1038/srep4108228112228
  • Chen B, Zheng T, Qin L, et al. Strong association between plasma dipeptidyl peptidase-4 activity and impaired cognitive function in elderly population with normal glucose tolerance. Front Aging Neurosci. 2017;9:247. doi:10.3389/fnagi.2017.0024728798686
  • Zheng T, Baskota A, Gao Y, Chen T, Tian H, Yang F. Increased plasma DPP4 activities predict new-onset hyperglycemia in Chinese over a four year period: possible associations with inflammation. Metabolism. 2015;64:498–505. doi:10.1016/j.metabol.2014.12.00425592717
  • Zheng T, Liu H, Qin L, et al. Oxidative stress-mediated influence of plasma DPP4 activity to BDNF ratio on mild cognitive impairment in elderly type 2 diabetic patients: results from the GDMD study in China. Metabolism. 2018b;87:105–112. doi:10.1016/j.metabol.2018.03.01429572131
  • Biessels GJ, Strachan MW, Visseren FL, Kappelle LJ, Whitmer RA. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions. Lancet Diabetes Endocrinol. 2014;2:246–255. doi:10.1016/S2213-8587(13)70088-324622755
  • Swomley AM, Butterfield DA. Oxidative stress in Alzheimer disease and mild cognitive impairment: evidence from human data provided by redox proteomics. Arch Toxicol. 2015;89:1669–1680. doi:10.1007/s00204-015-1556-z26126631
  • Zheng T, Qin L, Chen B, et al. Association of plasma dpp4 activity with mild cognitive impairment in elderly patients with type 2 diabetes: results from the GDMD study in China. Diabetes Care. 2016b;39:1594–1601.27371673
  • Im HI, Kenny PJ. MicroRNAs in neuronal function and dysfunction. Trends Neurosci. 2012;35(5):325–334. doi:10.1016/j.tins.2012.01.00422436491
  • Saba R, Schratt GM. MicroRNAs in neuronal development, function and dysfunction. Brain Res. 2010;1338:3–13. doi:10.1016/j.brainres.2010.03.10720380818
  • Konovalova J, Gerasymchuk D, Parkkinen I, Chmielarz P, Domanskyi A. Interplay between MicroRNAs and oxidative stress in neurodegenerative diseases. Int J Mol Sci. 2019;20(23):6055. doi:10.3390/ijms20236055
  • Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11:597–610. doi:10.1038/nrg284320661255
  • Schmiedel JM, Klemm SL, Zheng Y, et al. Gene expression. MicroRNA Control of Protein Expression Noise Science. 2015;348:128–132.25838385
  • Denk J, Boelmans K, Siegismund C, Lassner D, Arlt S, Jahn H. MicroRNA profiling of CSF reveals potential biomarkers to detect Alzheimer’s disease. PLoS One. 2015;10:e0126423. doi:10.1371/journal.pone.012642325992776
  • Kayano M, Higaki S, Satoh JI, et al. Plasma microRNA biomarker detection for mild cognitive impairment using differential correlation analysis. Biomark Res. 2016;4:22.27999671
  • Lusardi TA, Phillips JI, Wiedrick JT, et al. MicroRNAs in human cerebrospinal fluid as biomarkers for Alzheimer’s disease. J Alzheimers Dis. 2017;55:1223–1233. doi:10.3233/JAD-16083527814298
  • Jia LH, Liu YN. Downregulated serum miR-223 serves as biomarker in Alzheimer’s disease. Cell Biochem Funct. 2016;34:233–237. doi:10.1002/cbf.318427027823
  • Hong H, Li Y, Su B. Identification of circulating miR-125b as a potential biomarker of Alzheimer’s Disease in APP/PS1 transgenic mouse. J Alzheimers Dis. 2017;59(4):1449–1458. doi:10.3233/JAD-17015628731435
  • Tan L, Yu JT, Liu QY, et al. Circulating miR-125b as a biomarker of Alzheimer’s disease. J Neurol Sci. 2014;336(1–2):52–56. doi:10.1016/j.jns.2013.10.00224139697
  • Guan B, Li Q, Shen L, et al. and Li XH: microRNA-205 directly targets Krüppel-like factor 12 and is involved in invasion and apoptosis in basal-like breast carcinoma. Int J Oncol. 2016;49:720–734. doi:10.3892/ijo.2016.357327278159
  • Jiang M, Xiang Y, Wang D, et al. Dysregulated expression of miR-146a contributes to age-related dysfunction of macrophages. Aging Cell. 2012;11:29–40. doi:10.1111/j.1474-9726.2011.00757.x21981419
  • Keller A, Backes C, Haas J, et al. disease micro RNAs using next-generation sequencing. Alzheimers Dement. 2016;12:565–576. doi:10.1016/j.jalz.2015.12.01226806387
  • Wu Y, Xu J, Xu J, et al. Lower serum levels of miR-29c-3p and miR-19b-3p as biomarkers for Alzheimer’s disease. Tohoku J Exp Med. 2017;242:129–136. doi:10.1620/tjem.242.12928626163
  • Perluigi M, Barone E, Di Domenico F, Butterfield DA. Aberrant protein phosphorylation in Alzheimer disease brain disturbs pro-survival and cell death pathways. Biochim Biophys Acta. 2016;1862:1871–1882. doi:10.1016/j.bbadis.2016.07.00527425034
  • Le MT, Teh C, Shyh-Chang N, et al. MicroRNA-125b is a novel negative regulator of p53. Genes Dev. 2009;23:862–876. doi:10.1101/gad.176760919293287
  • Vousden KH, Lane DP. p53 in health and disease. Nat Rev Mol Cell Biol. 2007;8:275–283. doi:10.1038/nrm214717380161
  • Ma X, Liu L, Meng J. MicroRNA-125b promotes neurons cell apoptosis and Tau phosphorylation in Alzheimer’s disease. Neurosci Lett. 2017;661:57–62. doi:10.1016/j.neulet.2017.09.04328947385
  • Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37:495–500. doi:10.1038/ng153615806104
  • Prozorovski T, Schulze-Topphoff U, Glumm R, et al. Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol. 2008;10:385–394. doi:10.1038/ncb170018344989
  • Im H-I, Kenny PJ. MicroRNAs in neuronal function and dysfunction. Trends Neurosci. 2012;35:325–334. doi:10.1016/j.tins.2012.01.00422436491
  • Strum JC, Johnson JH, Ward J, et al. MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1. Mol Endocrinol. 2009;23:1876–1884. doi:10.1210/me.2009-011719819989
  • Lee ST, Chu K, Jung KH, et al. miR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model. Ann Neurol. 2012;72:269–277. doi:10.1002/ana.2358822926857
  • Jin Y, Chen Z, Liu X, Zhou X. Evaluating the microRNA targeting sites by luciferase reporter gene assay. Methods Mol Biol. 2013;936:117–127.23007504
  • Nicolas FE. Experimental validation of microRNA targets using a luciferase reporter system. Methods Mol Biol. 2011;732:139–152.21431711
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–233. doi:10.1016/j.cell.2009.01.00219167326
  • Dai Y, Zhou X. Computational methods for the identification of microRNA targets. Open AccessBioinform. 2010;2:29–39.