674
Views
6
CrossRef citations to date
0
Altmetric
REVIEW

How Does Chronobiology Contribute to the Development of Diseases in Later Life

&
Pages 655-666 | Received 01 Feb 2023, Accepted 13 Apr 2023, Published online: 20 Apr 2023

References

  • Bunney WE, Bunney BG. Molecular clock genes in man and lower animals: possible implications for circadian abnormalities in depression. Neuropsychopharmacology. 2000;22:335–345. doi:10.1016/S0893-133X(99)00145-1
  • Yerushalmi S, Green RM. Evidence for the adaptive significance of circadian rhythms. Ecol Lett. 2009;12:970–981. doi:10.1111/j.1461-0248.2009.01343.x
  • Patke A, Young MW, Axelrod S. Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol. 2020;21:67–84. doi:10.1038/s41580-019-0179-2
  • Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci. 2014;111:16219–16224. doi:10.1073/pnas.1408886111
  • Welsh DK, Logothetis DE, Meister M, Reppert SM. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron. 1995;14:697–706. doi:10.1016/0896-6273(95)90214-7
  • King DP, Takahashi JS. Molecular genetics of circadian rhythms in mammals. Annu Rev Neurosci. 2000;23:713–742. doi:10.1146/annurev.neuro.23.1.713
  • Iijima M, Nikaido T, Akiyama M, Moriya T, Shibata S. Methamphetamine-induced, suprachiasmatic nucleus-independent circadian rhythms of activity and mPer gene expression in the striatum of the mouse. Eur J Neurosci. 2002;16:921–929.
  • Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002;295:1070–1073. doi:10.1126/science.1067262
  • Warren EJ, Allen CN, Brown RL, Robinson DW. Intrinsic light responses of retinal ganglion cells projecting to the circadian system. Eur J Neurosci. 2003;17:1727–1735. doi:10.1046/j.1460-9568.2003.02594.x
  • Dacey DM, Liao H-W, Peterson BB, et al. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature. 2005;433:749–754. doi:10.1038/nature03387
  • Lucas RJ, Peirson SN, Berson DM, et al. Measuring and using light in the melanopsin age. Trends Neurosci. 2014;37:1–9.
  • Hankins MW, Peirson SN, Foster RG. Melanopsin: an exciting photopigment. Trends Neurosci. 2008;31:27–36. doi:10.1016/j.tins.2007.11.002
  • Hastings MH, Maywood ES, Brancaccio M. The mammalian circadian timing system and the suprachiasmatic nucleus as its pacemaker. Biology. 2019;8(13):13. doi:10.3390/biology8010013
  • Nakamura TJ, Nakamura W, Yamazaki S, et al. Age-related decline in circadian output. J Neurosci. 2011;31:10201–10205. doi:10.1523/JNEUROSCI.0451-11.2011
  • Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature. 2002;418:935–941. doi:10.1038/nature00965
  • McClung CA, Rhythms C. the mesolimbic dopaminergic circuit, and drug addiction. Sci World J. 2007;7:194–202. doi:10.1100/tsw.2007.213
  • Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock. Hum Mol Genet. 2006;15:R271–R277. doi:10.1093/hmg/ddl207
  • Koike N, Yoo S-H, Huang H-C, et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science. 2012;338:349–354. doi:10.1126/science.1226339
  • Aryal RP, Kwak PB, Tamayo AG, et al. Macromolecular assemblies of the mammalian circadian clock. Mol Cell. 2017;67:770–782.e6. doi:10.1016/j.molcel.2017.07.017
  • Yu W, Nomura M, Ikeda M. Interactivating feedback loops within the mammalian clock: BMAL1 is negatively autoregulated and upregulated by CRY1, CRY2, and PER2. Biochem Biophys Res Commun. 2002;290:933–941. doi:10.1006/bbrc.2001.6300
  • Takahashi JS. Molecular components of the circadian clock in mammals. Diabetes Obes Metab. 2015;17(Suppl 1):6–11. doi:10.1111/dom.12514
  • Partch CL, Green CB, Takahashi JS. Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 2014;24:90–99. doi:10.1016/j.tcb.2013.07.002
  • Fagiani F, Di Marino D, Romagnoli A, et al. Molecular regulations of circadian rhythm and implications for physiology and diseases. Signal Transduct Target Ther. 2022;7. doi:10.1038/s41392-022-00899-y
  • Mormont M-C, Waterhouse J. Contribution of the rest–activity circadian rhythm to quality of life in cancer patients. Chronobiol Int. 2002;19:313–323. doi:10.1081/CBI-120002606
  • Tranah GJ, Blackwell T, Stone KL, et al. Circadian activity rhythms and risk of incident dementia and mild cognitive impairment in older women. Ann Neurol. 2011;70:722–732. doi:10.1002/ana.22468
  • Esquirol Y, Perret B, Ruidavets JB, et al. Shift work and cardiovascular risk factors: new knowledge from the past decade. Arch Cardiovasc Dis. 2011;104:636–668. doi:10.1016/j.acvd.2011.09.004
  • Baron KG, Reid KJ. Circadian misalignment and health. Int Rev Psychiatry Abingdon Engl. 2014;26:139–154. doi:10.3109/09540261.2014.911149
  • Logan RW, McClung CA. Rhythms of life: circadian disruption and brain disorders across the lifespan. Nat Rev Neurosci. 2019;20:49–65. doi:10.1038/s41583-018-0088-y
  • Werner H, LeBourgeois MK, Geiger A, Jenni OG. Assessment of chronotype in four- to eleven-year-old children: reliability and validity of the children’s chronotype questionnaire (CCTQ). Chronobiol Int. 2009;26:992–1014. doi:10.1080/07420520903044505
  • Hood S, Amir S. The aging clock: circadian rhythms and later life. J Clin Invest. 2017;127:437–446. doi:10.1172/JCI90328
  • DePinho RA. The age of cancer. Nature. 2000;408:248–254. doi:10.1038/35041694
  • Duffy JF, Dijk D-J, Klerman EB, Czeisler CA. Later endogenous circadian temperature nadir relative to an earlier wake time in older people. Am J Physiol Regul Integr Comp Physiol. 1998;275:R1478–R1487. doi:10.1152/ajpregu.1998.275.5.R1478
  • Czeisler CA, Dumont M, Duffy JF, et al. Association of sleep-wake habits in older people with changes in output of circadian pacemaker. Lancet. 1992;340:933–936. doi:10.1016/0140-6736(92)92817-Y
  • Duffy JF, Zeitzer JM, Rimmer DW, et al. Peak of circadian melatonin rhythm occurs later within the sleep of older subjects. Am J Physiol Endocrinol Metab. 2002;282:E297–E303. doi:10.1152/ajpendo.00268.2001
  • Kin NY, Nair NMK, Schwartz NPV, Thavundayil G, Annable L. Secretion of melatonin in healthy elderly subjects: a longitudinal study. Ann N Y Acad Sci. 2004;1019:326–329.
  • Horne JA, Ostberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol. 1976;4:97–110.
  • Roenneberg T, Kuehnle T, Juda M, et al. Epidemiology of the human circadian clock. Sleep Med Rev. 2007;11:429–438. doi:10.1016/j.smrv.2007.07.005
  • Broms U, Pitkäniemi J, Bäckmand H, et al. Long-term consistency of diurnal-type preferences among men. Chronobiol Int. 2014;31:182–188. doi:10.3109/07420528.2013.836534
  • Albert N, da Silva C, Díez-Noguera A, Cambras T. Different adaptation of the motor activity rhythm to chronic phase shifts between adolescent and adult rats. Behav Brain Res. 2013;252:347–355.
  • Sellix MT, Evans JA, Leise TL, et al. Aging differentially affects the re-entrainment response of central and peripheral circadian oscillators. J Neurosci. 2012;32:16193–16202. doi:10.1523/JNEUROSCI.3559-12.2012
  • Monk TH, Buysse DJ, Reynolds CF, Kupfer DJ. Inducing jet lag in older people: adjusting to a 6-hour phase advance in routine. Exp Gerontol. 1993;28:119–133. doi:10.1016/0531-5565(93)90002-U
  • Monk TH, Kupfer DJ. Circadian rhythms in healthy aging—effects downstream from the pacemaker. Chronobiol Int. 2000;17:355–368. doi:10.1081/CBI-100101051
  • Li H, Satinoff E. Fetal tissue containing the suprachiasmatic nucleus restores multiple circadian rhythms in old rats. Am J Physiol Regul Integr Comp Physiol. 1998;275:R1735–R1744. doi:10.1152/ajpregu.1998.275.6.R1735
  • Hurd MW, Ralph MR. The significance of circadian organization for longevity in the golden hamster. J Biol Rhythms. 1998;13:430–436. doi:10.1177/074873098129000255
  • Swaab DF, Fliers E, Partiman TS. The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Res. 1985;342:37–44. doi:10.1016/0006-8993(85)91350-2
  • Roozendaal B, van Gool WA, Swaab DF, Hoogendijk JE, Mirmiran M. Changes in vasopressin cells of the rat suprachiasmatic nucleus with aging. Brain Res. 1987;409:259–264. doi:10.1016/0006-8993(87)90710-4
  • Nakamura TJ, Tokuda IT, Ishikawa T, et al. Age-related changes in the circadian system unmasked by constant conditions. eNeuro. 2015;2:64. doi:10.1523/ENEURO.0064-15.2015
  • Wyse CA, Coogan AN, Selman C, Hazlerigg DG, Speakman JR. Association between mammalian lifespan and circadian free-running period: the circadian resonance hypothesis revisited. Biol Lett. 2010;6:696–698. doi:10.1098/rsbl.2010.0152
  • Kolker DE, Vitaterna MH, Fruechte EM, Takahashi JS, Turek FW. Effects of age on circadian rhythms are similar in wild-type and heterozygous Clock mutant mice. Neurobiol Aging. 2004;25:517–523. doi:10.1016/j.neurobiolaging.2003.06.007
  • Chang H-C, Guarente L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell. 2013;153:1448–1460. doi:10.1016/j.cell.2013.05.027
  • Asai M, Yoshinobu Y, Kaneko S, et al. Circadian profile of Per gene mRNA expression in the suprachiasmatic nucleus, paraventricular nucleus, and pineal body of aged rats. J Neurosci Res. 2001;66:1133–1139. doi:10.1002/jnr.10010
  • Eghlidi DH, Luna SL, Brown DI, et al. Gene expression profiling of the SCN in young and old rhesus macaques. J Mol Endocrinol. 2018;61:57–67. doi:10.1530/JME-18-0062
  • Zhu Y, Liu Y, Escames G, et al. Deciphering clock genes as emerging targets against aging. Ageing Res Rev. 2022;81:101725.
  • Jiang Z, Zou K, Liu X, et al. Aging attenuates the ovarian circadian rhythm. J Assist Reprod Genet. 2021;38:33–40.
  • Bonaconsa M, Malpeli G, Montaruli A, et al. Differential modulation of clock gene expression in the suprachiasmatic nucleus, liver and heart of aged mice. Exp Gerontol. 2014;55:70–79. doi:10.1016/j.exger.2014.03.011
  • Jagota A, Thummadi NB, Kukkemane K. Chapter 20 - circadian regulation of hormesis for health and longevity. In: Rattan SIS, Kyriazis M, editors. The Science of Hormesis in Health and Longevity. Academic Press; 2019:223–233.
  • Wolff CA, Gutierrez-Monreal MA, Meng L, et al. Defining the age-dependent and tissue-specific circadian transcriptome in male mice. Cell Rep. 2023;42:111982.
  • Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP. Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Genes Dev. 2006;20:1868–1873. doi:10.1101/gad.1432206
  • Kondratov RV, Vykhovanets O, Kondratova AA, Antoch MP. Antioxidant N-acetyl-L-cysteine ameliorates symptoms of premature aging associated with the deficiency of the circadian protein BMAL1. Aging. 2009;1:979–987. doi:10.18632/aging.100113
  • Bunger MK, Wilsbacher LD, Moran SM, et al. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell. 2000;103:1009–1017.
  • Yang G, Chen L, Grant GR, et al. Timing of expression of the core clock gene Bmal1 influences its effects on aging and survival. Sci Transl Med. 2016;8:324ra16. doi:10.1126/scitranslmed.aad3305
  • Chhunchha B, Kubo E, Singh DP. Clock protein bmal1 and Nrf2 cooperatively control aging or oxidative response and redox homeostasis by regulating rhythmic expression of Prdx6. Cells. 2020;9:E1861.
  • Khapre RV, Kondratova AA, Patel S, et al. BMAL1-dependent regulation of the mTOR signaling pathway delays aging. Aging. 2014;6:48–57. doi:10.18632/aging.100633
  • Borbély AA. Sleep regulation: circadian rhythm and homeostasis. In: Sleep. editors, Ganten D, Pfaff D. Springer; 1982:83–103. doi:10.1007/978-3-642-68333-6_3
  • Dijk DJ, Czeisler CA. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci. 1995;15:3526–3538.
  • Suzuki K, Miyamoto M, Hirata K. Sleep disorders in the elderly: diagnosis and management. J Gen Fam Med. 2017;18:61–71.
  • Ohayon MM, Carskadon MA, Guilleminault C, Vitiello MV. Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. Sleep. 2004;27:1255–1273. doi:10.1093/sleep/27.7.1255
  • Redline S, Kirchner HL, Quan SF, et al. The effects of age, sex, ethnicity, and sleep-disordered breathing on sleep architecture. Arch Intern Med. 2004;164:406–418. doi:10.1001/archinte.164.4.406
  • Moraes W, Piovezan R, Poyares D, et al. Effects of aging on sleep structure throughout adulthood: a population-based study. Sleep Med. 2014;15:401–409. doi:10.1016/j.sleep.2013.11.791
  • Schwarz JFA, Åkerstedt T, Lindberg E, et al. Age affects sleep microstructure more than sleep macrostructure. J Sleep Res. 2017;26:277–287. doi:10.1111/jsr.12478
  • Varga AW, Wohlleber ME, Giménez S, et al. Reduced slow-wave sleep is associated with high cerebrospinal fluid Aβ42 levels in cognitively normal elderly. Sleep. 2016;39:2041–2048. doi:10.5665/sleep.6240
  • Baril -A-A, Beiser AS, Mysliwiec V, et al. Slow-wave sleep and MRI markers of brain aging in a community-based sample. Neurology. 2021;96:e1462–e1469. doi:10.1212/WNL.0000000000011377
  • Li J, Vitiello MV, Gooneratne N. Sleep in normal aging. Sleep Med Clin. 2018;13:1–11. doi:10.1016/j.jsmc.2017.09.001
  • Ju Y-ES, Videnovic A, Vaughn BV. Comorbid sleep disturbances in neurologic disorders. Contin Lifelong Learn Neurol. 2017;23(1117):1117–1131. doi:10.1212/CON.0000000000000501
  • Peter-Derex L, Yammine P, Bastuji H, Croisile B. Sleep and Alzheimer’s disease. Sleep Med Rev. 2015;19:29–38. doi:10.1016/j.smrv.2014.03.007
  • Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. Lancet Lond Engl. 2021;397:1577–1590. doi:10.1016/S0140-6736(20)32205-4
  • Musiek ES, Xiong DD, Holtzman DM. Sleep, circadian rhythms, and the pathogenesis of Alzheimer Disease. Exp Mol Med. 2015;47:e148–e148. doi:10.1038/emm.2014.121
  • Uddin MS, Tewari D, Mamun AA, et al. Circadian and sleep dysfunction in Alzheimer’s disease. Ageing Res Rev. 2020;60(101046):101046. doi:10.1016/j.arr.2020.101046
  • Lucey BP, McCullough A, Landsness EC, et al. Reduced non-rapid eye movement sleep is associated with tau pathology in early Alzheimer’s disease. Sci Transl Med. 2019;11:eaau6550.
  • Petit D, Gagnon J-F, Fantini ML, Ferini-Strambi L, Montplaisir J. Sleep and quantitative EEG in neurodegenerative disorders. J Psychosom Res. 2004;56:487–496. doi:10.1016/j.jpsychores.2004.02.001
  • Winer JR, Deters KD, Kennedy G, et al. Association of short and long sleep duration with amyloid-β burden and cognition in aging. JAMA Neurol. 2021;78:1–10. doi:10.1001/jamaneurol.2021.2876
  • Wilks H, Aschenbrenner AJ, Gordon BA, et al. Sharper in the morning: cognitive time of day effects revealed with high-frequency smartphone testing. J Clin Exp Neuropsychol. 2021;43:825–837. doi:10.1080/13803395.2021.2009447
  • Harper DG, Volicer L, Stopa EG, et al. Disturbance of endogenous circadian rhythm in aging and Alzheimer disease. Am J Geriatr Psychiatry. 2005;13:359–368. doi:10.1097/00019442-200505000-00004
  • Wang JL, Lim AS, Chiang W-Y, et al. Suprachiasmatic neuron numbers and rest-activity circadian rhythms in older humans. Ann Neurol. 2015;78:317–322. doi:10.1002/ana.24432
  • Wu Y-H, Fischer DF, Kalsbeek A, et al. Pineal clock gene oscillation is disturbed in Alzheimer’s disease, due to functional disconnection from the ‘master clock’. FASEB J off Publ Fed Am Soc Exp Biol. 2006;20:1874–1876.
  • Cermakian N, Waddington Lamont E, Boudreau P, Boivin DB. Circadian clock gene expression in brain regions of Alzheimer's disease patients and control subjects. J Biol Rhythms. 2011;26:160–170. doi:10.1177/0748730410395732
  • Weissová K, Bartoš A, Sládek M, Nováková M, Moderate SA. Changes in the circadian system of Alzheimer's disease patients detected in their home environment. PLoS One. 2016;11(e0146200):e0146200. doi:10.1371/journal.pone.0146200
  • Niu L, Zhang F, Xu X, et al. Chronic sleep deprivation altered the expression of circadian clock genes and aggravated Alzheimer’s disease neuropathology. Brain Pathol. 2021;32(e13028). doi:10.1111/bpa.13028
  • Mattam U, Jagota A. Daily rhythms of serotonin metabolism and the expression of clock genes in suprachiasmatic nucleus of rotenone-induced Parkinson’s disease male Wistar rat model and effect of melatonin administration. Biogerontology. 2015;16:109–123. doi:10.1007/s10522-014-9541-0
  • Delgado-Lara DL, González-Enríquez GV, Torres-Mendoza BM, et al. Effect of melatonin administration on the PER1 and BMAL1 clock genes in patients with Parkinson’s disease. Biomed Pharmacother Biomedecine Pharmacother. 2020;129:110485.
  • Leng Y, Goldman SM, Cawthon PM, et al. Excessive daytime sleepiness, objective napping and 11-year risk of Parkinson’s disease in older men. Int J Epidemiol. 2018;47:1679–1686. doi:10.1093/ije/dyy098
  • Zhu K, van Hilten JJ, Marinus J. The course of insomnia in Parkinson’s disease. Parkinsonism Relat Disord. 2016;33:51–57. doi:10.1016/j.parkreldis.2016.09.010
  • van Hilten JJ, Hoff JI, Middelkoop HA, Roos RA. The clinimetrics of hypokinesia in Parkinson’s disease: subjective versus objective assessment. J Neural Transm Park Dis Dement Sect. 1994;8:117–121. doi:10.1007/BF02250922
  • Hilten J, Hoogland G, van der Velde EA, et al. Diurnal effects of motor activity and fatigue in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1993;56:874–877. doi:10.1136/jnnp.56.8.874
  • van Hilten JJ, van Dijk JG, Dunnewold RJ, et al. Diurnal variation of essential and physiological tremor. J Neurol Neurosurg Psychiatry. 1991;54:516–519. doi:10.1136/jnnp.54.6.516
  • Baier PC, Branisa P, Koch R, et al. Circadian distribution of motor-activity in unilaterally 6-hydroxy-dopamine lesioned rats. Exp Brain Res. 2006;169:283–288. doi:10.1007/s00221-005-0343-0
  • Bolitho SJ, Naismith SL, Rajaratnam SMW, et al. Disturbances in melatonin secretion and circadian sleep–wake regulation in Parkinson disease. Sleep Med. 2014;15:342–347. doi:10.1016/j.sleep.2013.10.016
  • Bordet R. Addiction, experimental models and neurobiological mechanisms. Therapie. 2015;70:133–146. doi:10.2515/therapie/2014222
  • Breen DP, Vuono R, Nawarathna U, et al. Sleep and circadian rhythm regulation in early Parkinson disease. JAMA Neurol. 2014;71:589–595. doi:10.1001/jamaneurol.2014.65
  • Mesgar S, Jameie SB, Aliaghaei A, et al. Dopamine D1 receptor-mediated regulation of per1, per2, CLOCK, and BMAL1 expression in the suprachiasmatic nucleus in adult male rats. J Mol Neurosci. 2022;72:618–625. doi:10.1007/s12031-021-01923-6
  • Berger NA, Savvides P, Koroukian SM, et al. Cancer in the elderly. Trans Am Clin Climatol Assoc. 2006;117:147–156.
  • Hansen J. Night shift work and risk of breast cancer. Curr Environ Health Rep. 2017;4:325–339. doi:10.1007/s40572-017-0155-y
  • Zhou L, Zhang Z, Nice E, et al. Circadian rhythms and cancers: the intrinsic links and therapeutic potentials. J Hematol Oncol J Hematol Oncol. 2022;15:21.
  • Lie J-AS, Roessink J, Kjaerheim K. Breast cancer and night work among Norwegian nurses. Cancer Causes Control CCC. 2006;17:39–44. doi:10.1007/s10552-005-3639-2
  • Schernhammer ES, Laden F, Speizer FE, et al. Rotating night shifts and risk of breast cancer in women participating in the nurses’ health study. J Natl Cancer Inst. 2001;93:1563–1568. doi:10.1093/jnci/93.20.1563
  • Knutsson A, Alfredsson L, Karlsson B, et al. Breast cancer among shift workers: results of the WOLF longitudinal cohort study. Scand J Work Environ Health. 2013;39:170–177. doi:10.5271/sjweh.3323
  • Kettner NM, Katchy CA, Fu L. Circadian gene variants in cancer. Ann Med. 2014;46:208–220. doi:10.3109/07853890.2014.914808
  • Filipski E, Delaunay F, King VM, et al. Effects of chronic jet lag on tumor progression in mice. Cancer Res. 2004;64:7879–7885. doi:10.1158/0008-5472.CAN-04-0674
  • Khan S, Yong VW, Xue M. Circadian disruption in mice through chronic jet lag-like conditions modulates molecular profiles of cancer in nucleus accumbens and prefrontal cortex. Carcinogenesis. 2021;42:864–873. doi:10.1093/carcin/bgab012
  • Khan S, Liu Y, Siddique R, et al. Impact of chronically alternating light-dark cycles on circadian clock mediated expression of cancer (glioma)-related genes in the brain. Int J Biol Sci. 2019;15:1816–1834. doi:10.7150/ijbs.35520
  • Angelousi A, Kassi E, Ansari-Nasiri N, et al. Clock genes and cancer development in particular in endocrine tissues. Endocr Relat Cancer. 2019;26:R305–R317. doi:10.1530/ERC-19-0094
  • Cadenas C, van de Sandt L, Edlund K, et al. Loss of circadian clock gene expression is associated with tumor progression in breast cancer. Cell Cycle. 2014;13:3282–3291. doi:10.4161/15384101.2014.954454
  • Liu Y, Hao J, Yuan G, et al. PER1 as a tumor suppressor attenuated in the malignant phenotypes of breast cancer cells. Int J Gen Med. 2021;14:7077–7087. doi:10.2147/IJGM.S328184
  • Jiang W, Zhao S, Jiang X, et al. The circadian clock gene Bmal1 acts as a potential anti-oncogene in pancreatic cancer by activating the p53 tumor suppressor pathway. Cancer Lett. 2016;371:314–325. doi:10.1016/j.canlet.2015.12.002
  • Hoffman AE, Yi C-H, Zheng T, et al. CLOCK in breast tumorigenesis: genetic, epigenetic, and transcriptional profiling analyses. Cancer Res. 2010;70:1459–1468. doi:10.1158/0008-5472.CAN-09-3798
  • Wang Z, Su G, Dai Z, et al. Circadian clock genes promote glioma progression by affecting tumour immune infiltration and tumour cell proliferation. Cell Prolif. 2021;54:e12988. doi:10.1111/cpr.12988
  • Li A, Lin X, Tan X, et al. Circadian gene Clock contributes to cell proliferation and migration of glioma and is directly regulated by tumor-suppressive miR-124. FEBS Lett. 2013;587:2455–2460. doi:10.1016/j.febslet.2013.06.018
  • Zhou L, Yu Y, Sun S, Zhang T, Wang M. Cry 1 regulates the clock gene network and promotes proliferation and migration via the Akt/P53/P21 pathway in human osteosarcoma cells. J Cancer. 2018;9:2480–2491. doi:10.7150/jca.25213
  • Fu L, Pelicano H, Liu J, Huang P, Lee CC. The circadian gene period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell. 2002;111:41–50. doi:10.1016/S0092-8674(02)00961-3
  • Antoch MP, Gorbacheva VY, Vykhovanets O, et al. Disruption of the circadian clock due to the Clock mutation has discrete effects on aging and carcinogenesis. Cell Cycle Georget Tex. 2008;7:1197–1204. doi:10.4161/cc.7.9.5886
  • Antoch MP, Toshkov I, Kuropatwinski KK, Jackson M. Deficiency in PER proteins has no effect on the rate of spontaneous and radiation-induced carcinogenesis. Cell Cycle Georget Tex. 2013;12:3673–3680. doi:10.4161/cc.26614
  • Sancar A, Van Gelder RN. Clocks, cancer, and chronochemotherapy. Science. 2021;371:eabb0738. doi:10.1126/science.abb0738
  • Sulli G, Lam MTY, Panda S. Interplay between circadian clock and cancer: new frontiers for cancer treatment. Trends Cancer. 2019;5:475–494. doi:10.1016/j.trecan.2019.07.002
  • Moreno-Smith M, Milazzo G, Tao L, et al. Restoration of the molecular clock is tumor suppressive in neuroblastoma. Nat Commun. 2021;12. doi:10.1038/s41467-021-24196-4
  • Li H, Hastings MH, Rhee J, et al. Targeting age-related pathways in heart failure. Circ Res. 2020;126:533–551. doi:10.1161/CIRCRESAHA.119.315889
  • Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part I: aging arteries: a ‘set up’ for vascular disease. Circulation. 2003;107:139–146. doi:10.1161/01.CIR.0000048892.83521.58
  • Beesley S, Noguchi T, Welsh DK. Cardiomyocyte circadian oscillations are cell-autonomous, amplified by β-adrenergic signaling, and synchronized in cardiac ventricle tissue. PLoS One. 2016;11:e0159618. doi:10.1371/journal.pone.0159618
  • Maemura K, Takeda N, Nagai R. Circadian rhythms in the CNS and peripheral clock disorders: role of the biological clock in cardiovascular diseases. J Pharmacol Sci. 2007;103:134–138. doi:10.1254/jphs.FMJ06003X2
  • Takeda N, Maemura K. Circadian clock and cardiovascular disease. J Cardiol. 2011;57:249–256. doi:10.1016/j.jjcc.2011.02.006
  • Lin C, Tang X, Zhu Z, et al. The rhythmic expression of clock genes attenuated in human plaque-derived vascular smooth muscle cells. Lipids Health Dis. 2014;13(14). doi:10.1186/1476-511X-13-14
  • Davidson AJ, London B, Block GD, Menaker M. Cardiovascular tissues contain independent circadian clocks. Clin Exp Hypertens N Y N. 2005;27:307–311.
  • Millar-Craig MW, Bishop CN, Raftery EB. Circadian variation of blood-pressure. Lancet Lond Engl. 1978;1:795–797. doi:10.1016/S0140-6736(78)92998-7
  • Bray MS, Shaw CA, Moore MWS, et al. Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. Am J Physiol Heart Circ Physiol. 2008;294:H1036–H1047. doi:10.1152/ajpheart.01291.2007
  • Penev PD, Kolker DE, Zee PC, Turek FW. Chronic circadian desynchronization decreases the survival of animals with cardiomyopathic heart disease. Am J Physiol. 1998;275:H2334–H2337. doi:10.1152/ajpheart.1998.275.6.H2334
  • Martino TA, Oudit GY, Herzenberg AM, et al. Circadian rhythm disorganization produces profound cardiovascular and renal disease in hamsters. Am J Physiol Regul Integr Comp Physiol. 2008;294:R1675–R1683. doi:10.1152/ajpregu.00829.2007
  • Vetter C, Devore EE, Wegrzyn LR, et al. Association between rotating night shift work and risk of coronary heart disease among women. JAMA. 2016;315:1726–1734. doi:10.1001/jama.2016.4454
  • Vyas MV, Garg AX, Iansavichus AV, et al. Shift work and vascular events: systematic review and meta-analysis. BMJ. 2012;345:e4800. doi:10.1136/bmj.e4800
  • Zhao Y, Lu X, Wan F, et al. Disruption of circadian rhythms by shift work exacerbates reperfusion injury in myocardial infarction. J Am Coll Cardiol. 2022;79:2097–2115. doi:10.1016/j.jacc.2022.03.370