255
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Appropriate Circadian-Circasemidian Coupling Protects Blood Pressure from Morning Surge and Promotes Human Resilience and Wellbeing

, , , , , , & ORCID Icon show all
Pages 755-769 | Received 24 Nov 2022, Accepted 02 May 2023, Published online: 10 May 2023

References

  • Davydov DM, Stewart R, Ritchie K, Chaudieu I. Resilience and mental health. Clin Psychol Rev. 2010;30:479–495. doi:10.1016/j.cpr.2010.03.003
  • Yoshino K, Morimoto T, Itagaki T, Iketani S, Nagata M, Tsujishita M. Relationship between life satisfaction and sympathovagal balance in healthy elderly males at home at night. Health. 2012;4:1068–1072. doi:10.4236/health.2012.411163
  • Kong F, Wang X, Hu S, Liu J. Neural correlates of psychological resilience and their relation to life satisfaction in a sample of healthy young adults. Neuroimage. 2015;123:165–172. doi:10.1016/j.neuroimage.2015.08.020
  • Satici SA. Psychological vulnerability, resilience, and subjective well-being: the mediating role of hope. Pers Individ Differ. 2016;102:68–73. doi:10.1016/j.paid.2016.06.057
  • Kong F, Ma X, You X, Xiang Y. The resilient brain: psychological resilience mediates the effect of amplitude of low-frequency fluctuations in orbitofrontal cortex on subjective well-being in young healthy adults. Soc Cogn Affect Neurosci. 2018;13:755–763. doi:10.1093/scan/nsy045
  • King ML. The neural correlates of well-being: a systematic review of the human neuroimaging and neuropsychological literature. Cogn Affect Behav Neurosci. 2019;19:779–796. doi:10.3758/s13415-019-00720-4
  • Kamarck TW, Janicki DL, Shiffman S, et al. Psychosocial demands and ambulatory blood pressure: a field assessment approach. Physiol Behav. 2002;77:699–704. doi:10.1016/s0031-9384(02)00921-6
  • Zanstra YJ, Johnston DW. Cardiovascular reactivity in real life settings: measurement, mechanisms and meaning. Biol Psychol. 2011;86:98–105. doi:10.1016/j.biopsycho.2010.05.002
  • Kamarck TW, Li X, Wright AGC, Muldoon MF, Manuck SB. Ambulatory blood pressure reactivity as a moderator in the association between daily life psychosocial stress and carotid artery atherosclerosis. Psychosom Med. 2018;80:774–782. doi:10.1097/PSY.0000000000000627
  • Thomas MC, Kamarck TW, Li X, Erickson KI, Manuck SB. Physical activity moderates the effects of daily psychosocial stressors on ambulatory blood pressure. Health Psychol. 2019;38:925–935. doi:10.1037/hea0000755
  • Tomitani N, Kanegae H, Suzuki Y, Kuwabara M, Kario K. Stress-induced blood pressure elevation self-measured by a wearable watch-type device. Am J Hypertens. 2021;34:377–382. doi:10.1093/ajh/hpaa139
  • Gordon AM, Mendes WB. A large-scale study of stress, emotions, and blood pressure in daily life using a digital platform. Proc Natl Acad Sci U S A. 2021;118:e2105573118. doi:10.1073/pnas.2105573118
  • Weber J, Angerer P, Apolinário-Hagen J. Physiological reactions to acute stressors and subjective stress during daily life: a systematic review on ecological momentary assessment (EMA) studies. PLoS One. 2022;17:e0271996. doi:10.1371/journal.pone.0271996
  • Tomitani N, Kanegae H, Kario K. The effect of psychological stress and physical activity on ambulatory blood pressure variability detected by a multisensor ambulatory blood pressure monitoring device. Hypertens Res. 2022;1–6. doi:10.1038/s41440-022-01123-8
  • Curtis AM, Cheng Y, Kapoor S, Reilly D, Price TS, Fitzgerald GA. Circadian variation of blood pressure and the vascular response to asynchronous stress. Proc Natl Acad Sci U S A. 2007;104:3450–3455. doi:10.1073/pnas.0611680104
  • Jafari Roodbandi A, Choobineh A, Daneshvar S. Relationship between circadian rhythm amplitude and stability with sleep quality and sleepiness among shift nurses and health care workers. Int J Occup Saf Ergon. 2015;21:312–317. doi:10.1080/10803548.2015.1081770
  • Norsk P, Asmar A, Damgaard M, Christensen NJ. Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight. J Physiol. 2015;593:573–584. doi:10.1113/jphysiol.2014.284869
  • Di Milia L, Folkard S. More than morningness: the effect of circadian rhythm amplitude and stability on resilience, coping, and sleep duration. Front Psychol. 2021;12:782349. doi:10.3389/fpsyg.2021.782349
  • Roenneberg T, Foster RG, Klerman EB. The circadian system, sleep, and the health/disease balance: a conceptual review. J Sleep Res. 2022;31:e13621. doi:10.1111/jsr.13621
  • Thayer JF, Lane RD. Claude Bernard and the heart-brain connection: further elaboration of a model of neurovisceral integration. Neurosci Biobehav Rev. 2009;33:81–88. doi:10.1016/j.neubiorev.2008.08.004
  • Smolensky M, Halberg F, Sargent F. Chronobiology of the life sequence. In: Itoh S, Ogata K, Yoshimura H, editors. Advances in Climatic Physiology. Tokyo: Igaku Shoin Ltd.; 1972:281–318.
  • Cornelissen G, Breus TK, Bingham C, et al. Beyond circadian chronorisk: worldwide circaseptan-circasemiseptan patterns of myocardial infarctions, other vascular events, and emergencies. Chronobiologia. 1993;20:87–115.
  • Halberg F, Cornelissen G, Otsuka K, Schwartzkopff O, Halberg J, Bakken EE. Chronomics. Biomed Pharmacother. 2001;55(Suppl 1):153s–190s. doi:10.1016/S0753-3322(01)90022-8
  • Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature. 2002;418:935–941. doi:10.1038/nature00965
  • Halberg F, Cornelissen G, Katinas G, et al. Transdisciplinary unifying implications of circadian findings in the 1950s. J Circadian Rhythms. 2003;1:2. doi:10.1186/1740-3391-1-2
  • Hastings MH, Reddy AB, Maywood ES. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci. 2003;4:649–661. doi:10.1038/nrn1177
  • Halberg F, Cornelissen G, Sothern RB, Katinas GS, Schwartzkopff O, Otsuka K. Cycles tipping the scale between death and survival (=“Life”). Prog Theor Phys Supp. 2008;173:153–181. doi:10.1143/PTPS.173.153
  • Halberg F. Quo vadis basic and clinical chronobiology: promise for health maintenance. Am J Anat. 1983;168:543–594. doi:10.1002/aja.1001680408
  • West AC, Bechtold DA. The cost of circadian desynchrony: evidence, insights and open questions. Bioessays. 2015;37:777‐788. doi:10.1002/bies.201400173
  • Cornelissen G, Otsuka K. Chronobiology of aging: a mini-review. Gerontology. 2017;63:118–128. doi:10.1159/000450945
  • Panda S. The arrival of circadian medicine. Nat Rev Endocrinol. 2019;15:67–69. doi:10.1038/s41574-018-0142-x
  • Hughes ME, DiTacchio L, Hayes KR, et al. Harmonics of circadian gene transcription in mammals. PLoS Genet. 2009;5:e1000442. doi:10.1371/journal.pgen.1000442
  • Hughes ME, Hong HK, Chong JL, et al. Brain-specific rescue of Clock reveals system-driven transcriptional rhythms in peripheral tissue. PLoS Genet. 2012;8:e1002835. doi:10.1371/journal.pgen.1002835
  • Balance H, Zhu B. Revealing the hidden reality of the mammalian 12-h ultradian rhythms. Cell Mol Life Sci. 2021;78:3127–3140. doi:10.1007/s00018-020-03730-5
  • Otsuka K, Cornelissen G, Furukawa S, et al. Unconscious mind activates central cardiovascular network and promotes adaptation to microgravity possibly anti-aging during 1-year-long spaceflight. Sci Rep. 2022;12:11862. doi:10.1038/s41598-022-14858-8
  • Fu S, Watkins SM, Hotamisligil GS. The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell Metab. 2012;15:623–634. doi:10.1016/j.cmet.2012.03.007
  • Zhu B, Zhang Q, Pan Y, et al. A cell-autonomous mammalian 12 hr clock coordinates metabolic and stress rhythms. Cell Metab. 2017;25:1305–1319.e9. doi:10.1016/j.cmet.2017.05.004
  • Zhu B, Dacso CC, O’Malley BW. Unveiling “Musica Universalis” of the cell: a brief history of biological 12-hour rhythms. J Endocr Soc. 2018;2:727–752. doi:10.1210/js.2018-00113
  • Pan Y, Ballance H, Meng H, et al. 12-h clock regulation of genetic information flow by XBP1s. PLoS Biol. 2020;18:e3000580. doi:10.1371/journal.pbio.3000580
  • Oslowski CM, Urano F. Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol. 2011;490:71–92. doi:10.1016/B978-0-12-385114-7.00004-0
  • Dion W, Ballance H, Lee J, et al. Four-dimensional nuclear speckle phase separation dynamics regulate proteostasis. Sci Adv. 2022;8:eabl4150. doi:10.1126/sciadv.abl4150
  • Otsuka K, Watanabe H, Cornelissen G, et al. Gender, age and circadian blood pressure variation of apparently healthy rural vs. metropolitan Japanese. Chronobiologia. 1990;17:253–265.
  • Otsuka K, Cornelissen G, Halberg F. Predictive value of blood pressure dipping and swinging with regard to vascular disease risk. Clin Drug Invest. 1996;11:20–31. doi:10.2165/00044011-199611010-00003
  • Otsuka K, Cornelissen G, Halberg F, Oehlert G. Excessive circadian amplitude of blood pressure increases risk of ischemic stroke and nephropathy. J Med Eng Technol. 1997;21:23–30. doi:10.3109/03091909709030299
  • Otsuka K, Nishimura Y, Kubo Y, Cornelissen G, Halberg F. Chronomes (Rhythms, Chaos and Age Trends) of human heart rate variability in both genders. Comput Cardiol. 1997;24:49–52.
  • Otsuka K, Cornelissen G, Shinagawa M, et al. Circadian reference values for different endpoints of heart rate variability. Comput Cardiol. 1999;26:587–590.
  • Cornelissen G, Schwartzkopff O, Halberg F, Otsuka K, Watanabe Y. 7-day ambulatory monitoring for adults with hypertension and diabetes. Am J Kidney Dis. 2001;37:878. doi:10.1016/s0272-6386(01)80145-1
  • Halberg F, Cornelissen G, Wall D, et al. Engineering and governmental challenge: 7-day/24-hour chronobiologic blood pressure and heart rate screening: part I. Biomed Instrum Technol. 2002;36:89–122. doi:10.2345/0899-8205(2002)36[89:EAGCHC]2.0.CO;2
  • Halberg F, Cornelissen G, Wall D, et al. Engineering and governmental challenge: 7-day/24-hour chronobiologic blood pressure and heart rate screening: part II. Biomed Instrum Technol. 2002;36:183–197. doi:10.2345/0899-8205(2002)36[183:EAGCHC]2.0.CO;2
  • Shinagawa M, Otsuka K, Murakami S, et al. Seven-day (24-h) ambulatory blood pressure monitoring, self-reported depression and quality of life scores. Blood Pressure Monit. 2002;7:69–76. doi:10.1097/00126097-200202000-00015
  • Otsuka K, Yamanaka G, Shinagawa M, et al. Chronomic community screening reveals about 31% depression, elevated blood pressure and infradian vascular rhythm alteration. Biomed Pharmacother. 2004;58(Suppl 1):48s–55s. doi:10.1016/s0753-3322(04)80010-6
  • Murakami S, Otsuka K, Kubo Y, et al. Repeated ambulatory monitoring reveals a Monday morning surge in blood pressure in a community-dwelling population. Am J Hypertens. 2004;17:1179–1183. doi:10.1016/j.amjhyper.2004.07.016
  • Cornelissen G, Halberg F, Otsuka K, Singh RB, Chen CH. Chronobiology predicts actual and proxy outcomes when dipping fails. Hypertension. 2007;49:237–239. doi:10.1161/01.HYP.0000250392.51418.64
  • Halberg F, Cornelissen G, Otsuka K, et al. Extended consensus on need and means to detect vascular variability disorders (VVDs) and vascular variability syndromes (VVSs). Int Geronto Geriatr. 2008;11:119–146.
  • Murakami S, Otsuka K, Kono T, et al. Impact of outdoor temperature on prewaking morning surge and nocturnal decline in blood pressure in a Japanese population. Hypertens Res. 2011;34:70–73. doi:10.1038/hr.2010.176
  • Halberg F, Powell D, Otsuka K, et al. Diagnosing vascular variability anomalies, not only MESR-hypertension. Am J Physiol Heart Circ Physiol. 2013;305:H279–H294. doi:10.1152/ajpheart.00212.2013
  • Otsuka K, Okajima K, Yamanaka T, et al. Aging and the novelty pressor effect in men on the first day of 7-day/24-hour ambulatory blood pressure monitoring. J Am Geriatric Soc. 2014;62:1602–1605. doi:10.1111/jgs.12963
  • Otsuka K, Okajima K, Oinuma S, et al. Aging and circadian disruption of blood pressure observed using 7-day/24-hour ambulatory blood pressure monitoring. J Am Geriatrics Soc. 2014;62:2213–2215. doi:10.1111/jgs.13115
  • Okajima K, Otsuka K, Oinuma S, Sasaki J, Yamanaka T, Cornelissen G. Aging and within- and between-day variability assessed using 7-day/24-hour ambulatory blood pressure monitoring. J Am Geriatrics Soc. 2014;62:2440–2442. doi:10.1111/jgs.13166
  • Okajima K, Yamanaka G, Oinuma S, et al. Even mild depression is associated with among-day blood pressure variability, including masked non-dipping assessed by 7-d/24-h ambulatory blood pressure monitoring. Clin ExpHypertens. 2015;37:426–432. doi:10.3109/10641963.2015.1013114
  • Otsuka K, Cornelissen G, Halberg F. Chronomics and Continuous Ambulatory Blood Pressure Monitoring – Vascular Chronomics: From 7-Day/24-Hour to Lifelong Monitoring. Tokyo: Springer Japan; 2016:870 + lxxv pp. doi:10.1007/978-4-431-54631-3
  • Murakami S, Otsuka K, Kono T. Repeated ambulatory monitoring reveals an evening rise in blood pressure in a Japanese population. J Clin Hypertens. 2019;21:1675–1681. doi:10.1111/jch.13709
  • Napadow V, Dhond R, Conti G, Makris N, Brown EN, Barbieri R. Brain correlates of autonomic modulation: combining heart rate variability with fMRI. Neuroimage. 2008;42:169–177. doi:10.1016/j.neuroimage.2008.04.238
  • Saito K, Koyama A, Yoneyama K, et al. A Recent Advances in Time Series Analysis by Maximum Entropy Method. Sapporo: Hokkaido University Press; 1994.
  • Bingham C, Arbogast B, Cornelissen GG, Lee JK, Halberg F. Inferential statistical methods for estimating and comparing cosinor parameters. Chronobiologia. 1982;9:397–439.
  • Cornelissen G. Cosinor-based rhythmometry. Theor Biol Med Model. 2014;11:16. doi:10.1186/1742-4682-11-16
  • Fossel M. Editor’s Note. J Anti Aging Med. 1998;1:239.
  • Halberg F, Cornelissen G, Otsuka K, et al. Chronomics detects altered vascular variabilities constituting risks greater than hypertension: with an illustrative case report. In: Mitro P, Pella D, Rybar R, Valocik G, editors. Proceedings, 2nd Congress on Cardiovascular Diseases, Kosice, Slovakia, 25–27 April 2002. Bologna: Monduzzi Editore; 2002:223–258.
  • Murase M. Environmental pollution and health: an interdisciplinary study of the bioeffects of electromagnetic fields. SANSAI. 2008;3:1–35.
  • Halberg F, Visscher MB. Effect of light and of availability of food upon the 24-hour rhythm in number of circulating eosinophils in mice. Am J Physiol. 1952;171:732.
  • Pittendrigh CS. On temperature Independence in the clock system controlling emergence time in drosophila. Proc Natl Acad Sci USA. 1954;40:1018–1029. doi:10.1073/pnas.40.10.1018
  • Stephan FK, Zucker I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA. 1972;69:1583–1586. doi:10.1073/pnas.69.6.1583
  • Yagita K, Tamanini F, van Der Horst GT, Okamura H. Molecular mechanisms of the biological clock in cultured fibroblasts. Science. 2001;292:278–281. doi:10.1126/science.1059542
  • Halberg F, Cornelissen G, Wilson D, et al. Chronobiology and chronomics: detecting and applying the cycles of nature. Biologist. 2009;56:209–214.
  • Aviram R, Adamovich Y, Asher G. Circadian organelles: rhythms at all scales. Cells. 2021;10:2447. doi:10.3390/cells10092447
  • Otsuka K, Cornelissen G, Halberg F. Circadian rhythmic fractal scaling of heart rate variability in health and coronary artery disease. Clin Cardiol. 1997;20:631–638. doi:10.1002/clc.4960200710
  • Meng H, Gonzales NM, Lonard DM, et al. XBP1 links the 12-hour clock to NAFLD and regulation of membrane fluidity and lipid homeostasis. Nat Commun. 2020;11:6215. doi:10.1038/s41467-020-20028-z
  • Kario K, Pickering TG, Umeda Y, et al. Morning surge in blood pressure as a predictor of silent and clinical cerebrovascular disease in elderly hypertensives: a prospective study. Circulation. 2003;107:1401–1406. doi:10.1161/01.cir.0000056521.67546.aa
  • Li Y, Thijs L, Hansen TW, et al; International Database on Ambulatory Blood Pressure Monitoring in Relation to Cardiovascular Outcomes Investigators. Prognostic value of the morning blood pressure surge in 5645 subjects from 8 populations. Hypertension. 2010;55:1040–1048. doi:10.1161/HYPERTENSIONAHA.109.137273
  • Booth JN, Jaeger BC, Huang L, et al. Morning blood pressure surge and cardiovascular disease events and all-cause mortality in blacks: the Jackson Heart Study. Hypertension. 2020;75:835–843. doi:10.1161/HYPERTENSIONAHA.119.14233
  • Bilo G, Grillo A, Guida V, Parati G. Morning blood pressure surge: pathophysiology, clinical relevance and therapeutic aspects. Integr Blood Press Control. 2018;11:47–56. doi:10.2147/IBPC.S130277
  • Shin J. Evening blood pressure rise, from myth to reality. J Clin Hypertens. 2019;21:1682–1683. doi:10.1111/jch.13708
  • Gapon LI, Shurkevich NP, Vetoshkin AS, Gubin DG. The rhythms of arterial pressure and heart rate in individuals with arterial hypertension under the conditions of Far North. Klin Med (Mosk). 2006;84:39–44.
  • Baross AW, Brook RD, Kay AD, et al. Effects of isometric leg training on ambulatory blood pressure and morning blood pressure surge in young normotensive men and women. Sci Rep. 2022;12:356. doi:10.1038/s41598-021-04092-z
  • Zhu B, Wu J. Decoding the function and regulation of the mammalian 12-h clock. J Mol Cell Biol. 2020;12:752–758. doi:10.1093/jmcb/mjaa021
  • Cretenet G, Le Clech M, Gachon F. Circadian clock-coordinated 12 Hr period rhythmic activation of the IRE1alpha pathway controls lipid metabolism in mouse liver. Cell Metab. 2010;11:47–57. doi:10.1016/j.cmet.2009.11.002
  • Meng H, Gonzales NM, Jung SY, et al. Defining the mammalian coactivation of hepatic 12-h clock and lipid metabolism. Cell Rep. 2022;38:110491. doi:10.1016/j.celrep.2022.110491
  • Lyon AS, Peeples WB, Rosen MK. A framework for understanding the functions of biomolecular condensates across scales. Nat Rev Mol Cell Biol. 2021;22:215–235. doi:10.1038/s41580-020-00303-z
  • Sharma A, Takata H, Shibahara K, Bubulya A, Bubulya PA. Son is essential for nuclear speckle organization and cell cycle progression. Mol Biol Cell. 2010;21:650–663. doi:10.1091/mbc.e09-02-0126
  • Lu X, Ng HH, Bubulya PA. The role of SON in splicing, development, and disease. Wiley Interdiscip Rev RNA. 2014;5:637–646. doi:10.1002/wrna.1235
  • Mofatteh M, Echegaray-Iturra F, Alamban A, Dalla Ricca F, Bakshi A, Aydogan MG. Autonomous clocks that regulate organelle biogenesis, cytoskeletal organization, and intracellular dynamics. Elife. 2021;10:e72104. doi:10.7554/eLife.72104
  • Alexander KA, Coté A, Nguyen SC, et al. p53 mediates target gene association with nuclear speckles for amplified RNA expression. Mol Cell. 2021;81:1666–1681.e6. doi:10.1016/j.molcel.2021.03.006
  • Taylor RC, Dillin A. XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell. 2013;153:1435–1447. doi:10.1016/j.cell.2013.05.042
  • Houtkooper RH, Mouchiroud L, Ryu D, et al. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature. 2013;497(7450):451–457. doi:10.1038/nature12188
  • Yun J, Finkel T. Mitohormesis. Cell Metab. 2014;19:757–766. doi:10.1016/j.cmet.2014.01.011
  • Sun N, Youle RJ, Finkel T. The mitochondrial basis of aging. Mol Cell. 2016;61:654–666. doi:10.1016/j.molcel.2016.01.028
  • Gubin D, Weinert D, Cornelissen G. Chronotheranostics and chronotherapy – frontiers for personalized medicine. J Chronomed. 2020;22:3–23. doi:10.36361/2307-4698-2020-22-1-3-23