229
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Malondialdehyde and Zinc May Relate to Severity of Microvascular Complications in Diabetes: A Preliminary Study on Older Adults with Type 2 Diabetes Mellitus in Northeast China

, ORCID Icon, , , &
Pages 1141-1151 | Received 18 Feb 2024, Accepted 07 Jun 2024, Published online: 25 Jun 2024

References

  • Khalil H. Diabetes microvascular complications—A clinical update. Diab Metab Syndr. 2017;11:S133–S139. doi:10.1016/j.dsx.2016.12.022
  • Andersson E, Persson S, Hallén N, et al. Costs of diabetes complications: hospital-based care and absence from work for 392,200 people with type 2 diabetes and matched control participants in Sweden. Diabetologia. 2020;63:2582–2594. doi:10.1007/s00125-020-05277-3
  • Yan Y, Wu T, Zhang M, Li C, Liu Q, Li F. Prevalence, awareness and control of type 2 diabetes mellitus and risk factors in Chinese elderly population. BMC Public Health. 2022;22:1–6. doi:10.1186/s12889-022-13759-9
  • Longo M, Bellastella G, Maiorino MI, Meier JJ, Esposito K, Giugliano D. Diabetes and Aging: from Treatment Goals to Pharmacologic Therapy. Front Endocrinol. 2019;10:45. doi:10.3389/fendo.2019.00045
  • Li XT, Yu PF, Yan G, et al. Association between plasma metal levels and diabetes risk: a case-control study in China. Biomed Environ Sci. 2017;30:482–491. doi:10.3967/bes2017.064
  • Swaminathan S, Fonseca VA, Alam MG, Shah SV. Role of Iron in Diabetes and Its Complications. Diabetes Care. 2007;30:1926–1933. doi:10.2337/dc06-2625
  • Papachristoforou E, Lambadiari V, Maratou E, Makrilakis K, Sardu C. Association of glycemic indices (hyperglycemia, glucose variability, and hypoglycemia) with oxidative stress and diabetic complications. J Diabetes Res. 2020. doi:10.1155/2020/7489795
  • Krishnamurthy P, Wadhwani A. Antioxidant enzymes and human health. Antioxidant Enzyme. 2012;1:3–18.
  • Galaris D, Barbouti A, Pantopoulos K. Iron homeostasis and oxidative stress: an intimate relationship. Biochimica Et Biophysica Acta (BBA) - Molecular Cell Research. 2019;118535. doi:10.1016/j.bbamcr.2019.118535
  • Bigagli E, Lodovici M. Circulating oxidative stress biomarkers in clinical studies on type 2 diabetes and its complications. Oxid Med Cell Longev. 2019;2019:1–17. doi:10.1155/2019/5953685
  • Ayçiçek B, Tütüncü Y, Çavdar Ü, Sennaroğlu E. Relationships between microvascular complications of diabetes mellitus and levels of macro and trace elements. Minerva Endocrino. 2020.
  • Jeddi M, Torabi E. The relationship between zinc, glycemic control and microvascular complications of diabetes mellitus. Inter J Nutr Sci. 2019;4:130–136.
  • Myke-Mbata BK, Meludu SC, Obochi GO, Nnodim JK. Variations in some trace elements in various degrees of Diabetes mellitus. Al Ameen J Medl Scie. 2015;8:271–275.
  • Organization WH Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: Report of a WHO/IDF consultation. 2006.
  • Hinchliffe RJ, Forsythe RO, Apelqvist J, et al. Guidelines on diagnosis, prognosis, and management of peripheral artery disease in patients with foot ulcers and diabetes (IWGDF 2019 update). Diabetes/Metab Res Rev. 2020;36:e3276. doi:10.1002/dmrr.3276
  • Iqbal Z, Azmi S, Yadav R, et al. Diabetic Peripheral Neuropathy: epidemiology, Diagnosis, and Pharmacotherapy. Clin Ther. 2018;40:828–849. doi:10.1016/j.clinthera.2018.04.001
  • Molitch ME, Adler AI, Flyvbjerg A, et al. Diabetic kidney disease: a clinical update from kidney disease: improving global outcomes. Kidney Int. 2015;87:20–30. doi:10.1038/ki.2014.128
  • Avogaro A, Fadini GP. Microvascular complications in diabetes: a growing concern for cardiologists. Int J Cardiol. 2019;291:29–35. doi:10.1016/j.ijcard.2019.02.030
  • Stehouwer CD. Microvascular dysfunction and hyperglycemia: a vicious cycle with widespread consequences. Diabetes. 2018;67:1729–1741.
  • Petrie JR, Guzik TJ, Touyz RM. Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Can J Cardiol. 2018;34:575–584. doi:10.1016/j.cjca.2017.12.005
  • Iglay K, Hannachi H, Joseph Howie P, et al. Prevalence and co-prevalence of comorbidities among patients with type 2 diabetes mellitus. Curr Med Res Opin. 2016;32:1243–1252. doi:10.1185/03007995.2016.1168291
  • Association, A.D. 12. Older adults: standards of medical care in diabetes—2020. Diabetes Care. 2020;43:S152–S162. doi:10.2337/dc20-S012
  • Zhou X, Guan H, Zheng L, et al. Prevalence and awareness of diabetes mellitus among a rural population in China: Results from Liaoning Province. Diabetic Med. 2015;32:332–342. doi:10.1111/dme.12599
  • Bhatti JS, Sehrawat A, Mishra J, et al. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: current therapeutics strategies and future perspectives. Free Radical Bio Med. 2022;184:114–134.
  • Domingueti CP, Dusse LMS, Carvalho MDG, de Sousa LP, Gomes KB, Fernandes AP. Diabetes mellitus: the linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J Diabetes Complicat. 2016;30:738–745. doi:10.1016/j.jdiacomp.2015.12.018
  • Ahmed FN, Naqvi FN, Shafiq F. Lipid peroxidation and serum antioxidant enzymes in patients with type 2 diabetes mellitus. Ann Ny Acad Sci. 2006;1084:481–489. doi:10.1196/annals.1372.022
  • Pasaoglu H, Sancak B, Bukan N. Lipid Peroxidation and Resistance to Oxidation in Patients with Type 2 Diabetes Mellitus. Tohoku J Exp Med. 2004;203:211–218. doi:10.1620/tjem.203.211
  • Gęgotek A, Skrzydlewska E. Biological effect of protein modifications by lipid peroxidation products. Chem Phys Lipids. 2019;221:46–52. doi:10.1016/j.chemphyslip.2019.03.011
  • Burcham PC, Kuhan YT. Introduction of Carbonyl groups into proteins by the lipid peroxidation product, malondialdehyde. Biochem Biophys Res Commun. 1996;220:996–1001. doi:10.1006/bbrc.1996.0521
  • Marnett LJ. Lipid peroxidation—DNA damage by malondialdehyde. Mutat Res. 1999;424:83–95. doi:10.1016/S0027-5107(99)00010-X
  • Dimmeler S, Zeiher AM. Nitric oxide–an endothelial cell survival factor. Cell Death Differ. 1999;6:964–968. doi:10.1038/sj.cdd.4400581
  • Katsas K, Mamalaki E, Kontogianni MD, et al. Malnutrition in older adults: correlations with social, diet-related, and neuropsychological factors. Nutrition. 2020;71:110640. doi:10.1016/j.nut.2019.110640
  • Malavolta M, Mocchegiani E. Trace Elements and Minerals in Health and Longevity. Vol. 8. Springer; 2018.
  • Liu Y, Liu S, Mao J, et al. Serum trace elements profile in graves’ disease patients with or without orbitopathy in Northeast China. Biomed Res Int. 2018.
  • Sinha S, Sen S. Status of zinc and magnesium levels in type 2 diabetes mellitus and its relationship with glycemic status. Int J Diabetes Dev C. 2014;34:220–223. doi:10.1007/s13410-014-0196-9
  • Hall AG, King JC. The molecular basis for zinc bioavailability. Int J Mol Sci. 2023;24:6561. doi:10.3390/ijms24076561
  • Wołonciej M, Milewska E, Roszkowska-Jakimiec W. Trace elements as an activator of antioxidant enzymes. Post Higieny I Medycyny Doswiadczalnej. 2016;70:1483–1498. doi:10.5604/17322693.1229074
  • Piao M, Liu Y, Yu T, Lu Y. Dietary zinc reduces endoplasmic reticulum stress and autophagy to protect against diabetic renal damage in streptozotocin-induced diabetic rats. Int J Diabetes Dev C. 2019;39:340–345. doi:10.1007/s13410-018-0681-7
  • Hadj Abdallah N, Baulies A, Bouhlel A, et al. Zinc mitigates renal ischemia‐reperfusion injury in rats by modulating oxidative stress, endoplasmic reticulum stress, and autophagy. J Cell Physiol. 2018;233:8677–8690. doi:10.1002/jcp.26747
  • Cortese MM, Suschek CV, Wetzel W, Kröncke K, Kolb-Bachofen V. Zinc protects endothelial cells from hydrogen peroxide via Nrf2-dependent stimulation of glutathione biosynthesis. Free Radic Biol Med. 2008;44:2002–2012. doi:10.1016/j.freeradbiomed.2008.02.013
  • Li D, Tian H, Li X, et al. Zinc promotes functional recovery after spinal cord injury by activating Nrf2/HO-1 defense pathway and inhibiting inflammation of NLRP3 in nerve cells. Life Sci. 2020;245:117351. doi:10.1016/j.lfs.2020.117351
  • Liochev SI, Fridovich I. Copper- and zinc-containing superoxide dismutase can act as a superoxide reductase and a superoxide oxidase*. J Biol Chem. 2000;275:38482–38485. doi:10.1074/jbc.M007891200
  • Sun Q, van Dam RM, Willett WC, Hu FB. prospective study of zinc intake and risk of type 2 diabetes in women. Diabetes Care. 2009;32:629–634. doi:10.2337/dc08-1913
  • Barbagallo M, Dominguez LJ. Magnesium and aging. Curr Pharm Design. 2010;16:832–839. doi:10.2174/138161210790883679
  • Vogt AS, Arsiwala T, Mohsen M, Vogel M, Manolova V, Bachmann MF. On iron metabolism and its regulation. Int J Mol Sci. 2021;22:4591. doi:10.3390/ijms22094591
  • Ikeda Y, Funamoto M, Tsuchiya K. The role of iron in obesity and diabetes. J Med Invest. 2022;69:1–7. doi:10.2152/jmi.69.1