0
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Confounding and Negative Control Methods in Observational Study of SARS-CoV-2 Vaccine Effectiveness: A Nationwide, Population-Based Danish Health Registry Study

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 501-512 | Received 12 Mar 2024, Accepted 08 Jul 2024, Published online: 24 Jul 2024

References

  • Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020;383(27):2603–2615. doi:10.1056/NEJMoa2034577
  • Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021;384(5):403–416. doi:10.1056/NEJMoa2035389
  • Gram MA, Nielsen J, Schelde AB, et al. Vaccine effectiveness against SARS-CoV-2 infection, hospitalization, and death when combining a first dose ChAdOx1 vaccine with a subsequent mRNA vaccine in Denmark: a nationwide population-based cohort study. PLoS Med. 2021;18(12):e1003874. doi:10.1371/journal.pmed.1003874
  • Andrews N, Stowe J, Kirsebom F, et al. Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N Engl J Med. 2022;386(16):1532–1546. doi:10.1056/NEJMoa2119451
  • Tsang NNY, So HC, Cowling BJ, et al. Effectiveness of BNT162b2 and CoronaVac COVID-19 vaccination against asymptomatic and symptomatic infection of SARS-CoV-2 omicron BA.2 in Hong Kong: a prospective cohort study. Lancet Infect Dis. 2023;23(4):421–434. doi:10.1016/s1473-3099(22)00732-0
  • Chalkias S, Harper C, Vrbicky K, et al. A Bivalent Omicron-Containing Booster Vaccine against Covid-19. N Engl J Med. 2022;387(14):1279–1291. doi:10.1056/NEJMoa2208343
  • Collier AY, Miller J, Hachmann NP, et al. Immunogenicity of BA.5 Bivalent mRNA Vaccine Boosters. N Engl J Med. 2023;388(6):565–567. doi:10.1056/NEJMc2213948
  • Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol. 2021;21(2):83–100. doi:10.1038/s41577-020-00479-7
  • Remschmidt C, Wichmann O, Harder T. Frequency and impact of confounding by indication and healthy vaccinee bias in observational studies assessing influenza vaccine effectiveness: a systematic review. BMC Infect Dis. 2015;15:429. doi:10.1186/s12879-015-1154-y
  • Jackson LA, Jackson ML, Nelson JC, et al. Evidence of bias in estimates of influenza vaccine effectiveness in seniors. Int J Epidemiol. 2006;35(2):337–344. doi:10.1093/ije/dyi274
  • Jackson ML, Yu O, Nelson JC, et al. Further evidence for bias in observational studies of influenza vaccine effectiveness: the 2009 influenza A(H1N1) pandemic. Am J Epidemiol. 2013;178(8):1327–1336. doi:10.1093/aje/kwt124
  • Pálinkás A, Sándor J. Effectiveness of COVID-19 vaccination in preventing all-cause mortality among adults during the third wave of the epidemic in Hungary: nationwide retrospective cohort study. Vaccines. 2022;10(7). doi:10.3390/vaccines10071009
  • Nelson JC, Jackson ML, Weiss NS, et al. New strategies are needed to improve the accuracy of influenza vaccine effectiveness estimates among seniors. J Clin Epidemiol. 2009;62(7):687–694. doi:10.1016/j.jclinepi.2008.06.014
  • Jackson LA, Nelson JC, Benson P, et al. Functional status is a confounder of the association of influenza vaccine and risk of all cause mortality in seniors. Int J Epidemiol. 2006;35(2):345–352. doi:10.1093/ije/dyi275
  • Hulme WJ, Williamson E, Horne EMF, et al. Challenges in estimating the effectiveness of COVID-19 vaccination using observational data. Ann Intern Med. 2023;176(5):685–693. doi:10.7326/m21-4269
  • Kahn R, Schrag SJ, Verani JR, et al. Identifying and alleviating bias due to differential depletion of susceptible people in postmarketing evaluations of COVID-19 vaccines. Am J Epidemiol. 2022;191(5):800–811. doi:10.1093/aje/kwac015
  • Levintow SN, Nielson CM, Hernandez RK, et al. Pragmatic considerations for negative control outcome studies to guide non-randomized comparative analyses: a narrative review. Pharmacoepidemiol Drug Saf. 2023;32(6):599–606. doi:10.1002/pds.5623
  • Arnold BF, Ercumen A, Benjamin-Chung J, et al. Brief report: negative controls to detect selection bias and measurement bias in epidemiologic studies. Epidemiology. 2016;27(5):637–641. doi:10.1097/ede.0000000000000504
  • Shi X, Miao W, Tchetgen ET. A selective review of negative control methods in epidemiology. Curr Epidemiol Rep. 2020;7(4):190–202. doi:10.1007/s40471-020-00243-4
  • Schmidt M, Schmidt SAJ, Adelborg K, et al. The Danish health care system and epidemiological research: from health care contacts to database records. Clin Epidemiol. 2019;11:563–591. doi:10.2147/clep.S179083
  • Gram MA, Steenhard N, Cohen AS, et al. Patterns of testing in the extensive Danish national SARS-CoV-2 test set-up. PLoS One. 2023;18(7):e0281972. doi:10.1371/journal.pone.0281972
  • Overvad M, Koch A, Jespersen B, et al. Outcomes following SARS-CoV-2 infection in individuals with and without solid organ transplantation-A Danish nationwide cohort study. Am J Transplant. 2022;22(11):2627–2636. doi:10.1111/ajt.17142
  • Obel N, Dessau RB, Krogfelt KA, et al. Long term survival, health, social functioning, and education in patients with European Lyme neuroborreliosis: nationwide population based cohort study. BMJ. 2018;361:k1998. doi:10.1136/bmj.k1998
  • Frank L. Epidemiology. When an entire country is a cohort. Science. 2000;287(5462):2398–2399. doi:10.1126/science.287.5462.2398
  • Schmidt M, Pedersen L, Sørensen HT. The Danish civil registration system as a tool in epidemiology. Eur J Epidemiol. 2014;29(8):541–549. doi:10.1007/s10654-014-9930-3
  • Hansen CH, Michlmayr D, Gubbels SM, et al. Assessment of protection against reinfection with SARS-CoV-2 among 4 million PCR-tested individuals in Denmark in 2020: a population-level observational study. Lancet. 2021;397(10280):1204–1212. doi:10.1016/s0140-6736(21)00575-4
  • Grove Krause T, Jakobsen S, Haarh M, et al. The Danish vaccination register. Euro Surveill. 2012;17(17). doi:10.2807/ese.17.17.20155-en
  • Schmidt M, Schmidt SA, Sandegaard JL, et al. The Danish national patient registry: a review of content, data quality, and research potential. Clin Epidemiol. 2015;7:449–490. doi:10.2147/CLEP.S91125
  • Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology. 1999;10(1):37–48.
  • Cohn BA, Cirillo PM, Murphy CC, et al. SARS-CoV-2 vaccine protection and deaths among US veterans during 2021. Science. 2022;375(6578):331–336. doi:10.1126/science.abm0620
  • Thygesen SK, Christiansen CF, Christensen S, et al. The predictive value of ICD-10 diagnostic coding used to assess Charlson comorbidity index conditions in the population-based Danish national registry of patients. BMC Med Res Methodol. 2011;11:83. doi:10.1186/1471-2288-11-83
  • Cruijsen E, de Ruiter AJ, Küpers LK, et al. Alcohol intake and long-term mortality risk after myocardial infarction in the Alpha Omega Cohort. Am J Clin Nutr. 2022;115(3):633–642. doi:10.1093/ajcn/nqab366
  • Levine DA, Walter JM, Karve SJ, et al. Smoking and mortality in stroke survivors: can we eliminate the paradox? J Stroke Cerebrovasc Dis. 2014;23(6):1282–1290. doi:10.1016/j.jstrokecerebrovasdis.2013.10.026
  • Hoyer C, Schmidt HL, Kranaster L, et al. Impact of psychiatric comorbidity on the severity, short-term functional outcome, and psychiatric complications after acute stroke. Neuropsychiatr Dis Treat. 2019;15:1823–1831. doi:10.2147/ndt.S206771
  • Hall VJ, Foulkes S, Saei A, et al. COVID-19 vaccine coverage in health-care workers in England and effectiveness of BNT162b2 mRNA vaccine against infection (SIREN): a prospective, multicentre, cohort study. Lancet. 2021;397(10286):1725–1735. doi:10.1016/s0140-6736(21)00790-x
  • Chemaitelly H, Ayoub HH, AlMukdad S, et al. Duration of mRNA vaccine protection against SARS-CoV-2 Omicron BA.1 and BA.2 subvariants in Qatar. Nat Commun. 2022;13(1):3082. doi:10.1038/s41467-022-30895-3
  • Abu-Raddad LJ, Chemaitelly H, Ayoub HH, et al. Effect of mRNA Vaccine Boosters against SARS-CoV-2 Omicron Infection in Qatar. N Engl J Med. 2022;386(19):1804–1816. doi:10.1056/NEJMoa2200797
  • Kelly JD, Leonard S, Hoggatt KJ, et al. Incidence of Severe COVID-19 Illness Following Vaccination and Booster With BNT162b2, mRNA-1273, and Ad26.COV2.S Vaccines. JAMA. 2022;328(14):1427–1437. doi:10.1001/jama.2022.17985
  • Lin DY, Gu Y, Xu Y, et al. Association of Primary and Booster Vaccination and Prior Infection With SARS-CoV-2 Infection and Severe COVID-19 Outcomes. JAMA. 2022;328(14):1415–1426. doi:10.1001/jama.2022.17876
  • Vaugelade J, Pinchinat S, Guiella G, et al. Non-specific effects of vaccination on child survival: prospective cohort study in Burkina Faso. BMJ. 2004;329(7478):1309. doi:10.1136/bmj.38261.496366.82