114
Views
37
CrossRef citations to date
0
Altmetric
Review

MiR-326: Promising Biomarker for Cancer

, &
Pages 10411-10418 | Published online: 11 Dec 2019

References

  • Ambros V. The functions of animal MicroRNAs. Nature. 2004;431(7006 ):350–355. doi:10.1038/nature0287115372042
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2 ):281–297. doi:10.1016/S0092-8674(04)00045-514744438
  • Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new Era for the management of cancer and other diseases. Nat Rev Drug Discovery. 2017;16:203–222. doi:10.1038/nrd.2016.24628209991
  • Cai Y, Yu X, Hu S, Yu J. A brief review on the mechanisms of MiRNA regulation. Genomics Proteomics Bioinformatics. 2009;7:147–154. doi:10.1016/S1672-0229(08)60044-320172487
  • Liang X, Li Z, Men Q, Li Y, Li H, Chong T. MiR-326 functions as a tumor suppressor in human prostatic carcinoma by targeting Mucin1. Biomed Pharmacother. 2018;108:574–583. doi:10.1016/j.biopha.2018.09.05330243091
  • Li Y, Gao Y, Xu Y, Ma H, Yang M. Down-regulation of MIR-3206 is associated with poor prognosis and promotes growth and metastasis by targeting FSCN1 in gastric cancer. Growth Factors. 2015;33:267–274. doi:10.3109/08977194.2015.107640626359764
  • Sun C, Huang C, Li S, et al. Hsa-MiR-326 targets CCND1 and inhibits non-small cell lung cancer development. Oncotarget. 2016;7(7 ):8341.26840018
  • Hong CC, Chen PS, Chiou J, et al. MiR326 maturation is crucial for VEGF-C-driven cortactin expression and esophageal cancer progression. Cancer Res. 2014;74:6280–6290. doi:10.1158/0008-5472.CAN-14-052425205106
  • Cao H, Xu E, Liu H, Wan L, Lai M. Epithelial-mesenchymal transition in colorectal cancer metastasis: a system review. Pathol Res Pract. 2015;211:557–569. doi:10.1016/j.prp.2015.05.01026092594
  • Zhang H, Jiang L, Sun D, Li J, Tang J. MiR-139-5p: promising biomarker for cancer. Tumour Biol. 2015;36(3 ):1355–1365. doi:10.1007/s13277-015-3199-325691250
  • Wang R, Chen X, Xu T, et al. MiR-326 regulates cell proliferation and migration in lung cancer by targeting Phox2a and is regulated by HOTAIR. Am J Cancer Res. 2016;6(2 ):173.27186394
  • Liang Z, Wu H, Xia J, et al. Involvement of MiR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem Pharmacol. 2010;79:817–824. doi:10.1016/j.bcp.2009.10.01719883630
  • Cheng Y, Jiang S, Yuan J, Liu J, Simoncini T. Vascular endothelial growth factor C promotes cervical cancer cell invasiveness via regulation of MicroRNA-326/Cortactin expression. Gynecol Endocrinol. 2018;34(10 ):853–858. doi:10.1080/09513590.2018.145830429658350
  • Cao L, Wang J, Wang PQ. MiR-326 is a diagnostic biomarker and regulates cell survival and apoptosis by targeting Bcl-2 in osteosarcoma. Biomed Pharmacother. 2016;84:828–835. doi:10.1016/j.biopha.2016.10.00827723574
  • Nawaz Z, Patil V, Paul Y, et al. PI3 kinase pathway regulated MiRNome in glioblastoma: identification of MiR-326 as a tumour suppressor MiRNA. Mol Cancer. 2016;15. doi:10.1186/s12943-016-0557-8
  • Wu L, Hui H, Wang LJ, Wang H, Liu QF, Han SX. MicroRNA-326 functions as a tumor suppressor in colorectal cancer by targeting the nin one binding protein. Oncol Rep. 2015;33:2309–2318. doi:10.3892/or.2015.384025760058
  • Liu W, Zhang B, Xu N, Wang MJ, Liu Q. MiR-326 regulates EMT and metastasis of endometrial cancer through targeting TWIST1. Eur Rev Med Pharmacol Sci. 201721(17 ):3787–3793.28975990
  • Su CM, Su YH, Chiu CF, et al. Vascular endothelial growth factor-C upregulates cortactin and promotes metastasis of esophageal squamous cell carcinoma. Ann Surg Oncol. 2014;21:767–775. doi:10.1245/s10434-014-4009-724276639
  • Cai M, Wang Z, Zhang J, et al. Adam17, a target of Mir-326, promotes emt-induced cells invasion in lung adenocarcinoma. Cell Physiol Biochem. 2015;36:1175–1185. doi:10.1159/00043028826111641
  • Li D, Du X, Liu A, Li P. Suppression of nucleosome-binding protein 1 by MiR-326 impedes cell proliferation and invasion in non-small cell lung cancer cells. Oncol Rep. 2016;35(2 ):1117–1124. doi:10.3892/or.2015.440326548724
  • Zunke F, Rose-John S. The shedding protease ADAM17: physiology and pathophysiology. Biochim Biophys Acta Mol Cell Res. 2017;1864:2059–2070. doi:10.1016/j.bbamcr.2017.07.00128705384
  • Moss ML, Minond D. Recent advances in ADAM17 research: a promising target for cancer and inflammation. Mediators Inflamm. 2017;2017:1–21. doi:10.1155/2017/9673537
  • Baumgart A, Seidl S, Vlachou P, et al. ADAM17 regulates epidermal growth factor receptor expression through the activation of Notch1 in non-small cell lung cancer. Cancer Res. 2010;70:5368–5378. doi:10.1158/0008-5472.CAN-09-376320551051
  • Postnikov YV, Furusawa T, Haines DC, Factor VM, Bustin M. Loss of the nucleosome-binding protein HMGN1 affects the rate of N-Nitrosodiethylamine-induced hepatocarcinogenesis in mice. Mol Cancer Res. 2014;12:82–90. doi:10.1158/1541-7786.MCR-13-039224296759
  • Wei F, Yang F, Jiang X, Yu W, Ren X. High-mobility group nucleosome-binding protein 1 is a novel clinical biomarker in non-small cell lung cancer. Tumour Biol. 2015;36(12 ):9405–9410. doi:10.1007/s13277-015-3693-726113410
  • Zhang M, Zhao Z, Duan X, Chen P, Peng Z, Qiu H. FSCN1 predicts survival and is regulated by a PI3K-dependent mechanism in renal cell carcinoma. J Cell Physiol. 2018233(6 ):4748–4758. doi:10.1002/jcp.2626429148041
  • Wang CQ, Tang CH, Wang Y, et al. FSCN1 gene polymorphisms: biomarkers for the development and progression of breast cancer. Sci Rep. 2017;7(1 ):15887.29162880
  • Liu C, Gao H, Cao L, et al. The role of FSCN1 in migration and invasion of pituitary adenomas. Mol Cell Endocrinol. 2016;419:217–224.26522130
  • Sun J, Guo YD, Li XN, et al. B7-H3 expression in breast cancer and upregulation of VEGF through gene silence. Onco Targets Ther. 2014;1979. doi:10.2147/OTT25378933
  • Altan M, Pelekanou V, Schalper KA, et al. B7-H3 expression in NSCLC and its association with B7-H4, PD-L1 and tumor-infiltrating lymphocytes. Clin Cancer Res. 2017;23:5202–5209. doi:10.1158/1078-0432.CCR-16-310728539467
  • Zhang P, Kong F, Deng X, et al. MicroRNA-326 suppresses the proliferation, migration and invasion of cervical cancer cells by targeting ELK1. Oncol Lett. 2017;13(5 ):2949–2956.28529556
  • Wang L, Peng Z, Wang K, et al. NDUFA4L2 is associated with clear cell renal cell carcinoma malignancy and is regulated by ELK1. PeerJ. 2017;5:e4065. doi:10.7717/peerj.406529158991
  • Kawahara T, Aljarah AK, Shareef HK, et al. Silodosin inhibits prostate cancer cell growth via ELK1 inactivation and enhances the cytotoxic activity of gemcitabine. Prostate. 2016;76:744–756. doi:10.1002/pros.v76.826864615
  • Luo L, Wang Y, Yin Y, Ge J, Lu X. Effects of NOB1 on the pathogenesis of osteosarcoma and its expression on the chemosensitivity to cisplatin. Oncol Lett. 2018;15(3 ):3548–3551.29467874
  • Qi H, Wang Y. NOB1 gene as a potential biomarker in clinical outcomes and prognosis of patients with gastric cancer. Clin Lab. 2018;64(9 ):1469–1475. doi:10.7754/Clin.Lab.2018.18033030274015
  • Wang J, Cao L, Wu J, Wang Q. Long non-coding RNA SNHG1 regulates NOB1 expression by sponging MiR-326 and promotes tumorigenesis in osteosarcoma. Int J Oncol. 2018;52(1 ):77–88. doi:10.3892/ijo.2017.418729115574
  • Zhou J, Xu T, Yan Y, et al. MicroRNA-326 functions as a tumor suppressor in glioma by targeting the Nin One Binding Protein (NOB1). PLoS ONE. 2013;8(7 ):e68469. doi:10.1371/journal.pone.0068469.23869222
  • Zhao Z, Rahman MA, Chen ZG, Shin DM. Multiple biological functions of Twist1 in various cancers. Oncotarget. 2017;8(12 ):20380–20393. doi:10.18632/oncotarget.1460828099910
  • Xu Y, Qin L, Sun T, et al. Twist1 promotes breast cancer invasion and metastasis by silencing Foxa1 expression. Oncogene. 2017;36:1157–1166. doi:10.1038/onc.2016.28627524420
  • Lee KW, Yeo SY, Sung CO, Kim SH. Twist1 is a key regulator of cancer-associated fibroblasts. Cancer Res. 2015;75:73–85. doi:10.1158/0008-5472.CAN-14-035025368021
  • Xu X, Wells A, Padilla MT, et al. A signaling pathway consisting of MiR-551b, catalase and MUC1 contributes to acquired apoptosis resistance and chemoresistance. Carcinogenesis. 2014;2457–2466. doi:10.1093/carcin/bgu15925085901
  • Nie F, Liu T, Zhong L, et al. MicroRNA-148b enhances proliferation and apoptosis in human renal cancer cells via directly targeting MAP3K9. Mol Med Rep. 2016;13:83–90. doi:10.3892/mmr.2015.455526573018
  • Ke J, Yao Y, Zheng J, et al. Knockdown of long non-coding RNA HOTAIR inhibits malignant biological behaviors of human glioma cells via modulation of MiR-326. Oncotarget. 2015;6. doi:10.18632/oncotarget.v6i26
  • Liu X, Song B, Li S, Wang N, Yang H. Identification and functional analysis of the risk MicroRNAs associated with cerebral low-grade glioma prognosis. Mol Med Rep. 2017;16(2 ):1173–1179. doi:10.3892/mmr.2017.6705.28586047
  • Xu J, Lin DI. Oncogenic C-terminal Cyclin D1 (Ccnd1) mutations are enriched in endometrioid endometrial adenocarcinomas. PLoS ONE. 2018;13(7 ):e0199688. doi: 10.1371/journal29969496
  • Dai J, Wei R-J, Li R, Feng J-B, Yu Y-L, Liu P-S. A study of CCND1 with epithelial ovarian cancer cell proliferation and apoptosis. Eur Rev Med Pharmacol Sci. 2016;20(20 ):4230–4235.27831653
  • Liu P, Zhang R, Yu W, et al. FGF1 and IGF1-conditioned 3D culture system promoted the amplification and cancer stemness of lung cancer cells. Biomaterials. 2017;149:63–76. doi:10.1016/j.biomaterials.2017.09.03029017078
  • Pirou C, Montazer-Torbati F, Jah N, et al. FGF1 protects neuroblastoma SH-SY5Y cells from P53-dependent apoptosis through an intracrine pathway regulated by FGF1 phosphorylation. Cell Death Dis. 2017;8:e3023–e3023. doi:10.1038/cddis.2017.40429048426
  • Taeger J, Moser C, Hellerbrand C, et al. Targeting FGFR/PDGFR/VEGFR impairs tumor growth, angiogenesis, and metastasis by effects on tumor cells, endothelial cells, and pericytes in pancreatic cancer. Mol Cancer Ther. 2011;10:2157–2167. doi:10.1158/1535-7163.MCT-11-031221885862
  • Itoh N, Ornitz DM. Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J Biochem. 2011;149:121–130. doi:10.1093/jb/mvq12120940169
  • Ornitz DM, Itoh N. The fibroblast growth factor signaling pathway. Wiley Interdisciplinary Rev Dev Biol. 4(3 ):215–266.
  • Cross MJ, Claesson-Welsh L. FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci. 2001;22:201–207. doi:10.1016/S0165-6147(00)01676-X11282421
  • Zhao D, Lu Y, Yang C, Zhou X, Xu Z. Activation of FGF receptor signaling promotes invasion of non-small-cell lung cancer. Tumour Biol. 2015;36(5 ):3637–3642. doi:10.1007/s13277-014-3001-y25566961
  • Li Q, Alsaidan OA, Ma Y, et al. Pharmacologically targeting the myristoylation of the scaffold protein FRS2α inhibits FGF/FGFR-mediated oncogenic signaling and tumor progression. J Biol Chem. 2018;293(17 ):6434–6448. doi:10.1074/jbc.RA117.00094029540482
  • Baruzzi A, Remelli S, Lorenzetto E, Sega M, Chignola R, Berton G. Sos1 regulates macrophage podosome assembly and macrophage invasive capacity. J Immunol. 2015;195:4900–4912. doi:10.4049/jimmunol.150057926447228
  • Samatar AA, Poulikakos PI. Targeting RAS-ERK signalling in cancer: promises and challenges. Nat Rev Drug Discovery. 2014;13:928–942. doi:10.1038/nrd428125435214
  • Liu F, Mischel PS. Targeting epidermal growth factor receptor co-dependent signaling pathways in glioblastoma. Wiley Interdisciplinary Rev. 2018;10(1 ):e1398.
  • Retamales-Ortega R, Oróstica L, Vera C, et al. Role of Nerve Growth Factor (NGF) and MiRNAs in epithelial ovarian cancer. Int J Mol Sci. 2017;18:507. doi:10.3390/ijms18030507
  • Nico B, Mangieri D, Benagiano V, Crivellato E, Ribatti D. Nerve growth factor as an angiogenic factor. Microvasc Res. 2008;75:135–141. doi:10.1016/j.mvr.2007.07.00417764704
  • Yuan X, Cao J, He X, et al. Ciliary IFT80 balances canonical versus non-canonical hedgehog signalling for osteoblast differentiation. Nat Commun. 2016;7:11024.26996322
  • Shao J, Xu L, Chen L, et al. Arl13b promotes gastric tumorigenesis by regulating smo trafficking and activation of the hedgehog signaling pathway. Cancer Res. 2017;77:4000–4013. doi:10.1158/0008-5472.CAN-16-246128611043
  • Sabol M, Car D, Musani V, et al. The hedgehog signaling pathway in ovarian teratoma is stimulated by sonic hedgehog which induces internalization of patched. Int J Oncol. 2012;41:1411–1418. doi:10.3892/ijo.2012.155422797776
  • Lee RTH, Zhao Z, Ingham PW. Hedgehog signalling. Development. 2016.
  • Faião-Flores F, Alves-Fernandes DK, Pennacchi PC, et al. Targeting the hedgehog transcription factors GLI1 and GLI2 restores sensitivity to vemurafenib-resistant human melanoma cells. Oncogene. 2017;36:1849–1861. doi:10.1038/onc.2016.34827748762
  • Wang Y, Li Y, Hu G, et al. Nek2A phosphorylates and stabilizes SuFu: a new strategy of Gli2/Hedgehog signaling regulatory mechanism. Cell Signal. 2016;28(9 ):1304–1313. doi:10.1016/j.cellsig.2016.06.01027297360
  • Grzelak CA, Sigglekow ND, McCaughan GW. GLI2 as a marker of hedgehog-responsive cells. Hepatology. 2015 61(5 ):1770.
  • Northcott PA, Shih DJH, Peacock J, et al. Subgroup-specific structural variation across 1000 medulloblastoma genomes. Nature. 2012;488:49–56. doi:10.1038/nature1132722832581
  • Pugh TJ, Weeraratne SD, Archer TC, et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature. 2012;488(7409 ):106.22820256
  • D’Amico D, Antonucci L, Di Magno L, et al. Non-canonical Hedgehog/AMPK-mediated control of polyamine metabolism supports neuronal and medulloblastoma cell growth. Dev Cell. 2015;35(1 ):21–35. doi:10.1016/j.devcel.2015.09.00826460945
  • Farooqi AA, Shu CW, Huang HW, et al. Trail, Wnt, Sonic Hedgehog, TGFβ, and MiRNA signalings are potential targets for oral cancer therapy. Int J Mol Sci. 2017;18:1523. doi:10.3390/ijms18071523
  • Miele E, Po A, Begalli F, et al. β-Arrestin1-mediated acetylation of Gli1 regulates Hedgehog/Gli signaling and modulates self-renewal of SHH medulloblastoma cancer stem cells. BMC Cancer. 2017;17(1 ):488. doi:10.1186/s12885-017-3477-028716052
  • Maryu G, Matsuda M, Aoki K. Multiplexed fluorescence imaging of ERK and Akt activities and cell-cycle progression. Cell Struct Funct. 2016;41:81–92. doi:10.1247/csf.1600727247077
  • Faes S, Dormond O. PI3K and AKT: unfaithful partners in cancer. Int J Mol Sci. 2015;16:21138–21152. doi:10.3390/ijms16092113826404259
  • Lien EC, Dibble CC, Toker A. PI3K signaling in cancer: beyond AKT. Curr Opin Cell Biol. 2017;45:62–71. doi:10.1016/j.ceb.2017.02.00728343126
  • Insall RH, Weiner OD. PIP3, PIP2, and cell movement - Similar messages, different meanings? Dev Cell. 2001;1:743–747. doi:10.1016/S1534-5807(01)00086-711740936
  • Chen J, Zhao K-N, Li R, Shao R, Chen C. Activation of PI3K/Akt/MTOR pathway and dual inhibitors of PI3K and MTOR in endometrial cancer. Curr Med Chem. 2014;21(26 ):3070–3080. doi:10.2174/092986732166614041409560524735369
  • Porta C, Paglino C, Mosca A. Targeting PI3K/Akt/MTOR signaling in cancer. Front Oncol. 2014;4. doi:10.3389/fonc.2014.00064
  • Wu X-L, Wang L-K, Yang -D-D, et al. Effects of Glut1 gene silencing on proliferation, differentiation, and apoptosis of colorectal cancer cells by targeting the TGF-β/PI3K-AKT-MTOR signaling pathway. J Cell Biochem. 2018;119(2 ):2356–2367. doi:10.1002/jcb.v119.228884839
  • Slattery ML, Mullany LE, Sakoda LC, et al. The PI3K/AKT signaling pathway: associations of MiRNAs with dysregulated gene expression in colorectal cancer. Mol Carcinog. 2018;57(2 ):243–261. doi:10.1002/mc.v57.229068474
  • Wang R, Xu J, Xu J, et al. MiR-326/Sp1/KLF3: a novel regulatory axis in lung cancer progression. Cell Prolif. 2019;52:e12551. doi:10.1111/cpr.2019.52.issue-230485570
  • Deschênes-Simard X, Kottakis F, Meloche S, Ferbeyre G. ERKs in cancer: friends or foes? Cancer Res. 2014;74:412–419. doi:10.1158/0008-5472.CAN-13-238124408923
  • Yoo S-M, Cho SJ, Cho -Y-Y. Molecular targeting of ERKs/RSK2 signaling axis in cancer prevention. J Cancer Prev. 2015;20(3 ):165.26473154
  • Tanimura S, Takeda K. ERK signalling as a regulator of cell motility. J Biochem. 2017;162:145–154. doi:10.1093/jb/mvx04828903547
  • Jaiswal BS, Durinck S, Stawiski EW, et al. ERK mutations and amplification confer resistance to ERK-inhibitor therapy. Clin Cancer Res. 2018;24:4044–4055. doi:10.1158/1078-0432.CCR-17-367429760222
  • Dorard C, Vucak G, Baccarini M. Deciphering the RAS/ERK pathway in vivo. Biochem Soc Trans. 2017;45(1 ):27–36. doi:10.1042/BST2016013528202657
  • Zahavi T, Maimon A, Kushnir T, et al. Ras-Erk signaling induces phosphorylation of human TLE1 and downregulates its repressor function. Oncogene. 2017;36:3729–3739. doi:10.1038/onc.2016.51728192406
  • Kidger AM, Keyse SM. The regulation of oncogenic Ras/ERK signalling by dual-specificity mitogen activated protein kinase phosphatases (MKPs). Semin Cell Dev Biol. 2016;50:125–132. doi:10.1016/j.semcdb.2016.01.00926791049
  • Kang K, Zhang J, Zhang X, Chen Z. MicroRNA-326 inhibits melanoma progression by targeting KRAS and suppressing the AKT and ERK signalling pathways. Oncol Rep. 2018;39(1 ):401–410.29115540
  • Kartal-Yandim M, Adan-Gokbulut A, Baran Y. Molecular mechanisms of drug resistance and its reversal in cancer. Crit Rev Biotechnol. 2016;36(4 ):716–726.25757878
  • Kibria G, Hatakeyama H, Harashima H. Cancer multidrug resistance: mechanisms involved and strategies for circumvention using a drug delivery system. Arch Pharm Res. 2014;37:4–15. doi:10.1007/s12272-013-0276-224272889
  • Ma J, Wang T, Guo R, et al. Involvement of MIR-133a and MIR-326 in ADM resistance of HepG2 through modulating expression of ABCC1. J Drug Target. 2015;23:519–524. doi:10.3109/1061186X.2015.101553625714665
  • Cole SPC. Targeting multidrug resistance Protein 1 (MRP1, ABCC1): past, present, and future. Annu Rev Pharmacol Toxicol. 2014;54:95–117. doi:10.1146/annurev-pharmtox-011613-13595924050699
  • Cole SPC. Multidrug resistance Protein 1 (Mrp1, Abcc1), a “Multitasking” Atp-Binding Cassette (Abc,) transporter. J Biol Chem. 2014;289:30880–30888. doi:10.1074/jbc.R114.60924825281745
  • Rivankar S. An overview of doxorubicin formulations in cancer therapy. J Cancer Res Ther. 2014;10(4 ):853–858. doi:10.4103/0973-1482.13926725579518
  • Cagel M, Grotz E, Bernabeu E, Moretton MA, Chiappetta DA. Doxorubicin: nanotechnological overviews from bench to bedside. Drug Discov Today. 2017;22:270–281. doi:10.1016/j.drudis.2016.11.00527890669
  • Ma J, Wang T, Guo R, et al. MicroRNA-133a and MicroRNA-326 co-contribute to hepatocellular carcinoma 5-fluorouracil and cisplatin sensitivity by directly targeting B-Cell lymphoma.Extra large. Mol Med Rep. 2015;12:6235–6240. doi:10.3892/mmr.2015.413426239225
  • Choi S, Chen Z, Tang LH, et al. Bcl-XL promotes metastasis independent of its anti-apoptotic activity. Nat Commun. 2016;7:10384.26785948
  • de Jong Y, Monderer D, Brandinelli E, et al. Bcl-Xl as the most promising Bcl-2 family member in targeted treatment of chondrosarcoma. Oncogenesis. 2018;7. doi:10.1038/s41389-018-0084-0
  • Sara JD, Kaur J, Khodadadi R, et al. 5-fluorouracil and cardiotoxicity: a review. Ther Adv Med Oncol. 2018;10:1758835918780140. doi:10.1177/175883591878014029977352
  • Ji WB, Um JW, Ryu JS, et al. Clinical significance of 5-fluorouracil chemosensitivity testing in patients with colorectal cancer. Anticancer Res. 2017;37(5 ):2679–2682.28476844