117
Views
15
CrossRef citations to date
0
Altmetric
Review

Genetic And Epigenetic Regulation Of E-Cadherin Signaling In Human Hepatocellular Carcinoma

, ORCID Icon, , , , , & show all
Pages 8947-8963 | Published online: 16 Oct 2019

References

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6 ):394–424. doi:10.3322/caac.2149230207593
  • Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol. 2006;45(4 ):529–538. doi:10.1016/j.jhep.2006.05.01316879891
  • van Roy F. Beyond E-cadherin: roles of other cadherin superfamily members in cancer. Nat Rev Cancer. 2014;14(2 ):121–134. doi:10.1038/nrc364724442140
  • Harrison OJ, Bahna F, Katsamba PS, et al. Two-step adhesive binding by classical cadherins. Nat Struct Mol Biol. 2010;17(3 ):348–357. doi:10.1038/nsmb.178420190754
  • Nardone V, Lucarelli AP, Dalle Vedove A, et al. Crystal structure of human E-Cadherin-EC1EC2 in complex with a peptidomimetic competitive inhibitor of cadherin homophilic interaction. J Med Chem. 2016;59(10 ):5089–5094. doi:10.1021/acs.jmedchem.5b0148727120112
  • Beavon IR. The E-cadherin-catenin complex in tumour metastasis: structure, function and regulation. Eur J Cancer. 2000;36(13Spec No ):1607–1620. doi:10.1016/s0959-8049(00)00158-110959047
  • van Roy F, Berx G. The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci. 2008;65(23 ):3756–3788. doi:10.1007/s00018-008-8281-118726070
  • Wijnhoven BP, Dinjens WN, Pignatelli M. E-cadherin-catenin cell-cell adhesion complex and human cancer. Br J Surg. 2000;87(8 ):992–1005. doi:10.1046/j.1365-2168.2000.01513.x10931041
  • Pokutta S, Weis WI. Structure and mechanism of cadherins and catenins in cell-cell contacts. Annu Rev Cell Dev Biol. 2007;23:237–261. doi:10.1146/annurev.cellbio.22.010305.10424117539752
  • Epifano C, Megias D, Perez-Moreno M. p120-catenin differentially regulates cell migration by Rho-dependent intracellular and secreted signals. EMBO Rep. 2014;15(5 ):592–600. doi:10.1002/embr.20133786824639556
  • Anastasiadis PZ, Reynolds AB. Regulation of Rho GTPases by p120-catenin. Curr Opin Cell Biol. 2001;13(5 ):604–610. doi:10.1016/s0955-0674(00)00258-111544030
  • Ascano JJ, Frierson H Jr, Moskaluk CA, et al. Inactivation of the E-cadherin gene in sporadic diffuse-type gastric cancer. Mod Pathol. 2001;14(10 ):942–949. doi:10.1038/modpathol.388041611598162
  • Guilford P, Hopkins J, Harraway J, et al. E-cadherin germline mutations in familial gastric cancer. Nature. 1998;392(6674 ):402–405. doi:10.1038/329189537325
  • Horne HN, Oh H, Sherman ME, et al. E-cadherin breast tumor expression, risk factors and survival: pooled analysis of 5,933 cases from 12 studies in the Breast Cancer Association Consortium. Sci Rep. 2018;8(1 ):6574. doi:10.1038/s41598-018-23733-429700408
  • Kanai Y, Ushijima S, Hui AM, et al. The E-cadherin gene is silenced by CpG methylation in human hepatocellular carcinomas. Int J Cancer. 1997;71(3 ):355–359. doi:10.1002/(sici)1097-0215(19970502)71:3<355::aid-ijc8>3.0.co;2-x9139867
  • Zhang X, Yang M, Shi H, et al. Reduced E-cadherin facilitates renal cell carcinoma progression by WNT/beta-catenin signaling activation. Oncotarget. 2017;8(12 ):19566–19576. doi:10.18632/oncotarget.1536128223537
  • Nieto MA, Huang RY, Jackson RA, Thiery JP. Emt: 2016. Cell. 2016;166(1 ):21–45. doi:10.1016/j.cell.2016.06.02827368099
  • Marcucci F, Stassi G, De Maria R. Epithelial-mesenchymal transition: a new target in anticancer drug discovery. Nat Rev Drug Discov. 2016;15(5 ):311–325. doi:10.1038/nrd.2015.1326822829
  • Mendonsa AM, Na TY, Gumbiner BM. E-cadherin in contact inhibition and cancer. Oncogene. 2018;37(35 ):4769–4780. doi:10.1038/s41388-018-0304-229780167
  • Perrais M, Chen X, Perez-Moreno M, Gumbiner BM. E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions. Mol Biol Cell. 2007;18(6 ):2013–2025. doi:10.1091/mbc.e06-04-034817392517
  • Qian X, Karpova T, Sheppard AM, McNally J, Lowy DR. E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. Embo J. 2004;23(8 ):1739–1748. doi:10.1038/sj.emboj.760013615057284
  • Kourtidis A, Lu R, Pence LJ, Anastasiadis PZ. A central role for cadherin signaling in cancer. Exp Cell Res. 2017;358(1 ):78–85. doi:10.1016/j.yexcr.2017.04.00628412244
  • Lecuit T, Yap AS. E-cadherin junctions as active mechanical integrators in tissue dynamics. Nat Cell Biol. 2015;17(5 ):533–539. doi:10.1038/ncb313625925582
  • McCrea PD, Maher MT, Gottardi CJ. Nuclear signaling from cadherin adhesion complexes. Curr Top Dev Biol. 2015;112:129–196.25733140
  • Hu QP, Kuang JY, Yang QK, Bian XW, Yu SC. Beyond a tumor suppressor: soluble E-cadherin promotes the progression of cancer. Int J Cancer. 2016;138(12 ):2804–2812. doi:10.1002/ijc.2998226704932
  • Polakis P. Wnt signaling in cancer. Cold Spring Harb Perspect Biol. 2012;4(5 ):a008052. doi:10.1101/cshperspect.a00805222438566
  • Schneider JA, Logan SK. Revisiting the role of Wnt/beta-catenin signaling in prostate cancer. Mol Cell Endocrinol. 2018;462(Pt A ):3–8. doi:10.1016/j.mce.2017.02.00828189566
  • Wang Z, Zhang H, Hou J, et al. Clinical implications of beta-catenin protein expression in breast cancer. Int J Clin Exp Pathol. 2015;8(11 ):14989–14994.26823833
  • Rahmani F, Avan A, Hashemy SI, Hassanian SM. Role of Wnt/beta-catenin signaling regulatory microRNAs in the pathogenesis of colorectal cancer. J Cell Physiol. 2018;233(2 ):811–817. doi:10.1002/jcp.2589728266708
  • Vilchez V, Turcios L, Marti F, Gedaly R. Targeting Wnt/beta-catenin pathway in hepatocellular carcinoma treatment. World J Gastroenterol. 2016;22(2 ):823–832. doi:10.3748/wjg.v22.i2.82326811628
  • Shang S, Hua F, Hu ZW. The regulation of beta-catenin activity and function in cancer: therapeutic opportunities. Oncotarget. 2017;8(20 ):33972–33989. doi:10.18632/oncotarget.1568728430641
  • Jeanes A, Gottardi CJ, Yap AS. Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene. 2008;27(55 ):6920–6929. doi:10.1038/onc.2008.34319029934
  • van de Wetering M, Barker N, Harkes IC, et al. Mutant E-cadherin breast cancer cells do not display constitutive Wnt signaling. Cancer Res. 2001;61(1 ):278–284.11196175
  • Yook JI, Li XY, Ota I, et al. A Wnt-Axin2-GSK3beta cascade regulates snail1 activity in breast cancer cells. Nat Cell Biol. 2006;8(12 ):1398–1406. doi:10.1038/ncb150817072303
  • Huber O, Korn R, McLaughlin J, Ohsugi M, Herrmann BG, Kemler R. Nuclear localization of beta-catenin by interaction with transcription factor LEF-1. Mech Dev. 1996;59(1 ):3–10. doi:10.1016/0925-4773(96)00597-78892228
  • Nolan T, Hands RE, Bustin SA. Quantification of mRNA using real-time RT-PCR. Nat Protoc. 2006;1(3 ):1559–1582. doi:10.1038/nprot.2006.23617406449
  • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1 ):57–63. doi:10.1038/nrg248419015660
  • Wetmur JG. DNA probes: applications of the principles of nucleic acid hybridization. Crit Rev Biochem Mol Biol. 1991;26(3–4 ):227–259. doi:10.3109/104092391091140691718662
  • Rouck JE, Krapf JE, Roy J, Huff HC, Das A. Recent advances in nanodisc technology for membrane protein studies (2012–2017). FEBS Lett. 2017;591(14 ):2057–2088. doi:10.1002/1873-3468.1270628581067
  • Ben Ismail M, Carreiras F, Agniel R, et al. Application of APTES-Anti-E-cadherin film for early cancer monitoring. Colloids Surf B Biointerfaces. 2016;146:550–557. doi:10.1016/j.colsurfb.2016.06.04827423102
  • Li S, Mao M. Next generation sequencing reveals genetic landscape of hepatocellular carcinomas. Cancer Lett. 2013;340(2 ):247–253. doi:10.1016/j.canlet.2012.09.02723063663
  • Berx G, Staes K, van Hengel J, et al. Cloning and characterization of the human invasion suppressor gene E-cadherin (CDH1). Genomics. 1995;26(2 ):281–289. doi:10.1016/0888-7543(95)80212-57601454
  • Corso G, Intra M, Trentin C, Veronesi P, Galimberti V. CDH1 germline mutations and hereditary lobular breast cancer. Fam Cancer. 2016;15(2 ):215–219. doi:10.1007/s10689-016-9869-526759166
  • Berx G, Becker KF, Hofler H, van Roy F. Mutations of the human E-cadherin (CDH1) gene. Hum Mutat. 1998;12(4 ):226–237. doi:10.1002/(SICI)1098-1004(1998)12:4<226::AID-HUMU2>3.0.CO;2-D9744472
  • Da Silva L, Parry S, Reid L, et al. Aberrant expression of E-cadherin in lobular carcinomas of the breast. Am J Surg Pathol. 2008;32(5 ):773–783. doi:10.1097/PAS.0b013e318158d6c518379416
  • Melo S, Figueiredo J, Fernandes MS, et al. Predicting the functional impact of CDH1 missense mutations in hereditary diffuse gastric cancer. Int J Mol Sci. 2017;18(12 ):2687. doi:10.3390/ijms18122687
  • Tamura G, Sakata K, Nishizuka S, et al. Inactivation of the E-cadherin gene in primary gastric carcinomas and gastric carcinoma cell lines. Jpn J Cancer Res. 1996;87(11 ):1153–1159. doi:10.1111/j.1349-7006.1996.tb03125.x9045944
  • Wang G, Huang CH, Zhao Y, et al. Genetic aberration in primary hepatocellular carcinoma: correlation between p53 gene mutation and loss-of-heterozygosity on chromosome 16q21-q23 and 9p21-p23. Cell Res. 2000;10(4 ):311–323. doi:10.1038/sj.cr.729005811191353
  • Slagle BL, Zhou YZ, Birchmeier W, Scorsone KA. Deletion of the E-cadherin gene in hepatitis B virus-positive Chinese hepatocellular carcinomas. Hepatology. 1993;18(4 ):757–762. doi:10.1002/hep.18401804028104855
  • Wei Y, Van Nhieu JT, Prigent S, Srivatanakul P, Tiollais P, Buendia MA. Altered expression of E-cadherin in hepatocellular carcinoma: correlations with genetic alterations, beta-catenin expression, and clinical features. Hepatology. 2002;36(3 ):692–701. doi:10.1053/jhep.2002.3534212198663
  • Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5 ):401–404. doi:10.1158/2159-8290.CD-12-009522588877
  • Guichard C, Amaddeo G, Imbeaud S, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet. 2012;44(6 ):694–698. doi:10.1038/ng.225622561517
  • Pomo JM, Taylor RM, Gullapalli RR. Influence of TP53 and CDH1 genes in hepatocellular cancer spheroid formation and culture: a model system to understand cancer cell growth mechanics. Cancer Cell Int. 2016;16:44. doi:10.1186/s12935-016-0318-127303212
  • Bulzico D, Torres DC, Ferreira GM, et al. A novel TP53 Mutation Associated with TWIST1 and SIP1 expression in an aggressive adrenocortical carcinoma. Endocr Pathol. 2017;28(4 ):326–331. doi:10.1007/s12022-017-9482-728421464
  • Cheng JC, Auersperg N, Leung PC. Inhibition of p53 represses E-cadherin expression by increasing DNA methyltransferase-1 and promoter methylation in serous borderline ovarian tumor cells. Oncogene. 2011;30(37 ):3930–3942. doi:10.1038/onc.2011.11721478913
  • Liu J, Ruan B, You N, et al. Downregulation of miR-200a induces EMT phenotypes and CSC-like signatures through targeting the beta-catenin pathway in hepatic oval cells. PLoS One. 2013;8(11 ):e79409. doi:10.1371/journal.pone.007940924260215
  • Llovet JM, Zucman-Rossi J, Pikarsky E, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2016;2:16018. doi:10.1038/nrdp.2016.1827158749
  • Gong Y, Qin Z, Zhou B, Chen H, Shi Z, Zhang J. MicroRNA-200a inhibits transforming growth factor beta1-induced proximal tubular epithelial-mesenchymal transition by targeting beta-catenin. Nephron. 2017;137(3 ):237–249. doi:10.1159/00047916828817830
  • Yang Z, Liu S, Zhu M, et al. PS341 inhibits hepatocellular and colorectal cancer cells through the FOXO3/CTNNB1 signaling pathway. Sci Rep. 2016;6:22090. doi:10.1038/srep2209026915315
  • Zucman-Rossi J, Benhamouche S, Godard C, et al. Differential effects of inactivated Axin1 and activated beta-catenin mutations in human hepatocellular carcinomas. Oncogene. 2007;26(5 ):774–780. doi:10.1038/sj.onc.120982416964294
  • Heng HH, Bremer SW, Stevens JB, et al. Chromosomal instability (CIN): what it is and why it is crucial to cancer evolution. Cancer Metastasis Rev. 2013;32(3–4 ):325–340. doi:10.1007/s10555-013-9427-723605440
  • Wilkinson PD, Delgado ER, Alencastro F, et al. The polyploid state restricts hepatocyte proliferation and liver regeneration in mice. Hepatology. 2019;69(3 ):1242–1258. doi:10.1002/hep.3028630244478
  • Rajagopalan H, Lengauer C. Aneuploidy and cancer. Nature. 2004;432(7015 ):338–341. doi:10.1038/nature0309915549096
  • Sheltzer JM, Amon A. The aneuploidy paradox: costs and benefits of an incorrect karyotype. Trends Genet. 2011;27(11 ):446–453. doi:10.1016/j.tig.2011.07.00321872963
  • Gao C, Su Y, Koeman J, et al. Chromosome instability drives phenotypic switching to metastasis. Proc Natl Acad Sci U S A. 2016;113(51 ):14793–14798. doi:10.1073/pnas.161821511327930335
  • Celesti G, Di Caro G, Bianchi P, et al. Presence of Twist1-positive neoplastic cells in the stroma of chromosome-unstable colorectal tumors. Gastroenterology. 2013;145(3 ):647–657 e615. doi:10.1053/j.gastro.2013.05.01123684708
  • Yang MH, Wu MZ, Chiou SH, et al. Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol. 2008;10(3 ):295–305. doi:10.1038/ncb169118297062
  • Yang SW, Zhang ZG, Hao YX, et al. HIF-1alpha induces the epithelial-mesenchymal transition in gastric cancer stem cells through the snail pathway. Oncotarget. 2017;8(6 ):9535–9545. doi:10.18632/oncotarget.1448428076840
  • Risolino M, Mandia N, Iavarone F, et al. Transcription factor PREP1 induces EMT and metastasis by controlling the TGF-beta-SMAD3 pathway in non-small cell lung adenocarcinoma. Proc Natl Acad Sci U S A. 2014;111(36 ):E3775–E3784. doi:10.1073/pnas.140707411125157139
  • Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 2009;19(2 ):156–172. doi:10.1038/cr.2009.519153598
  • Liu YN, Lee WW, Wang CY, Chao TH, Chen Y, Chen JH. Regulatory mechanisms controlling human E-cadherin gene expression. Oncogene. 2005;24(56 ):8277–8290. doi:10.1038/sj.onc.120899116116478
  • Chaudhary J, Skinner MK. Basic helix-loop-helix proteins can act at the E-box within the serum response element of the c-fos promoter to influence hormone-induced promoter activation in sertoli cells. Mol Endocrinol. 1999;13(5 ):774–786. doi:10.1210/mend.13.5.027110319327
  • Behrens J, Lowrick O, Klein-Hitpass L, Birchmeier W. The E-cadherin promoter: functional analysis of a G.C-rich region and an epithelial cell-specific palindromic regulatory element. Proc Natl Acad Sci U S A. 1991;88(24 ):11495–11499. doi:10.1073/pnas.88.24.114951763063
  • Paznekas WA, Okajima K, Schertzer M, Wood S, Jabs EW. Genomic organization, expression, and chromosome location of the human SNAIL gene (SNAI1) and a related processed pseudogene (SNAI1P). Genomics. 1999;62(1 ):42–49. doi:10.1006/geno.1999.601010585766
  • Lin Y, Dong C, Zhou BP. Epigenetic regulation of EMT: the snail story. Curr Pharm Des. 2014;20(11 ):1698–1705. doi:10.2174/1381612811319999051223888971
  • Tong ZT, Cai MY, Wang XG, et al. EZH2 supports nasopharyngeal carcinoma cell aggressiveness by forming a co-repressor complex with HDAC1/HDAC2 and snail to inhibit E-cadherin. Oncogene. 2012;31(5 ):583–594. doi:10.1038/onc.2011.25421685935
  • Molina-Ortiz P, Villarejo A, MacPherson M, et al. Characterization of the SNAG and SLUG domains of Snail2 in the repression of E-cadherin and EMT induction: modulation by serine 4 phosphorylation. PLoS One. 2012;7(5 ):e36132. doi:10.1371/journal.pone.003613222567133
  • Zhao Z, Rahman MA, Chen ZG, Shin DM. Multiple biological functions of twist1 in various cancers. Oncotarget. 2017;8(12 ):20380–20393. doi:10.18632/oncotarget.1460828099910
  • Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117(7 ):927–939. doi:10.1016/j.cell.2004.06.00615210113
  • Yang F, Sun L, Li Q, et al. SET8 promotes epithelial-mesenchymal transition and confers TWIST dual transcriptional activities. Embo J. 2012;31(1 ):110–123. doi:10.1038/emboj.2011.36421983900
  • Lander R, Nasr T, Ochoa SD, Nordin K, Prasad MS, Labonne C. Interactions between twist and other core epithelial-mesenchymal transition factors are controlled by GSK3-mediated phosphorylation. Nat Commun. 2013;4:1542. doi:10.1038/ncomms254323443570
  • Forghanifard MM, Ardalan Khales S, Farshchian M, Rad A, Homayouni-Tabrizi M, Abbaszadegan MR. Negative regulatory role of TWIST1 on SNAIL gene expression. Pathol Oncol Res. 2017;23(1 ):85–90. doi:10.1007/s12253-016-0093-227438288
  • Sanchez-Tillo E, Lazaro A, Torrent R, et al. ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatin-remodeling protein BRG1. Oncogene. 2010;29(24 ):3490–3500. doi:10.1038/onc.2010.10220418909
  • Comijn J, Berx G, Vermassen P, et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell. 2001;7(6 ):1267–1278. doi:10.1016/s1097-2765(01)00260-x11430829
  • Bassez G, Camand OJ, Cacheux V, et al. Pleiotropic and diverse expression of ZFHX1B gene transcripts during mouse and human development supports the various clinical manifestations of the “Mowat-Wilson” syndrome. Neurobiol Dis. 2004;15(2 ):240–250. doi:10.1016/j.nbd.2003.10.00415006694
  • He Y, Northey JJ, Pelletier A, et al. The Cdc42/Rac1 regulator CdGAP is a novel E-cadherin transcriptional co-repressor with Zeb2 in breast cancer. Oncogene. 2017;36(24 ):3490–3503. doi:10.1038/onc.2016.49228135249
  • Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23(7 ):781–783. doi:10.1101/gad.178760919339683
  • Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150(1 ):12–27. doi:10.1016/j.cell.2012.06.01322770212
  • Matsumura T, Makino R, Mitamura K. Frequent down-regulation of E-cadherin by genetic and epigenetic changes in the malignant progression of hepatocellular carcinomas. Clin Cancer Res. 2001;7(3 ):594–599.11297254
  • Zlotorynski E. Epigenetics: DNA methylation prevents intragenic transcription. Nat Rev Mol Cell Biol. 2017;18(4 ):212–213. doi:10.1038/nrm.2017.18
  • Traube FR, Carell T. The chemistries and consequences of DNA and RNA methylation and demethylation. RNA Biol. 2017;14(9 ):1099–1107. doi:10.1080/15476286.2017.131824128440690
  • Chiba T, Yokosuka O, Fukai K, et al. Identification and investigation of methylated genes in hepatoma. Eur J Cancer. 2005;41(8 ):1185–1194. doi:10.1016/j.ejca.2005.02.01415911243
  • Yang B, Guo M, Herman JG, Clark DP. Aberrant promoter methylation profiles of tumor suppressor genes in hepatocellular carcinoma. Am J Pathol. 2003;163(3 ):1101–1107. doi:10.1016/S0002-9440(10)63469-412937151
  • Lee S, Lee HJ, Kim JH, Lee HS, Jang JJ, Kang GH. Aberrant CpG island hypermethylation along multistep hepatocarcinogenesis. Am J Pathol. 2003;163(4 ):1371–1378. doi:10.1016/S0002-9440(10)63495-514507645
  • Arzumanyan A, Friedman T, Kotei E, Ng IO, Lian Z, Feitelson MA. Epigenetic repression of E-cadherin expression by hepatitis B virus x antigen in liver cancer. Oncogene. 2012;31(5 ):563–572. doi:10.1038/onc.2011.25521706058
  • Liu J, Lian Z, Han S, et al. Downregulation of E-cadherin by hepatitis B virus X antigen in hepatocellullar carcinoma. Oncogene. 2006;25(7 ):1008–1017. doi:10.1038/sj.onc.120913816247464
  • Qiu X, Qiao F, Su X, Zhao Z, Fan H. Epigenetic activation of E-cadherin is a candidate therapeutic target in human hepatocellular carcinoma. Exp Ther Med. 2010;1(3 ):519–523. doi:10.3892/etm_0000008222993570
  • Yoshiura K, Kanai Y, Ochiai A, Shimoyama Y, Sugimura T, Hirohashi S. Silencing of the E-cadherin invasion-suppressor gene by CpG methylation in human carcinomas. Proc Natl Acad Sci U S A. 1995;92(16 ):7416–7419. doi:10.1073/pnas.92.16.74167543680
  • Tanaka M, Katayama F, Kato H, et al. Hepatitis B and C virus infection and hepatocellular carcinoma in China: a review of epidemiology and control measures. J Epidemiol. 2011;21(6 ):401–416. doi:10.2188/jea.JE2010019022041528
  • Lee JO, Kwun HJ, Jung JK, Choi KH, Min DS, Jang KL. Hepatitis B virus X protein represses E-cadherin expression via activation of DNA methyltransferase 1. Oncogene. 2005;24(44 ):6617–6625. doi:10.1038/sj.onc.120882716007161
  • Arora P, Kim EO, Jung JK, Jang KL. Hepatitis C virus core protein downregulates E-cadherin expression via activation of DNA methyltransferase 1 and 3b. Cancer Lett. 2008;261(2 ):244–252. doi:10.1016/j.canlet.2007.11.03318164808
  • Hermann A, Goyal R, Jeltsch A. The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J Biol Chem. 2004;279(46 ):48350–48359. doi:10.1074/jbc.M40342720015339928
  • Lim SO, Gu JM, Kim MS, et al. Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter. Gastroenterology. 2008;135(6 ):2128–2140, 2140 e2121–2140 2128. doi:10.1053/j.gastro.2008.07.027
  • Cheng X. Structural and functional coordination of DNA and histone methylation. Cold Spring Harb Perspect Biol. 2014;6(8 ):a018747. doi:10.1101/cshperspect.a01874725085914
  • Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10 ):1057–1068. doi:10.1038/nbt.168520944598
  • Bannister AJ, Schneider R, Kouzarides T. Histone methylation: dynamic or static? Cell. 2002;109(7 ):801–806. doi:10.1016/s0092-8674(02)00798-512110177
  • Song Y, Wu F, Wu J. Targeting histone methylation for cancer therapy: enzymes, inhibitors, biological activity and perspectives. J Hematol Oncol. 2016;9(1 ):49. doi:10.1186/s13045-016-0279-927316347
  • Bernstein BE, Kamal M, Lindblad-Toh K, et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell. 2005;120(2 ):169–181. doi:10.1016/j.cell.2005.01.00115680324
  • Dong C, Wu Y, Yao J, et al. G9a interacts with snail and is critical for snail-mediated E-cadherin repression in human breast cancer. J Clin Invest. 2012;122(4 ):1469–1486. doi:10.1172/JCI5734922406531
  • Yokoyama M, Chiba T, Zen Y, et al. Histone lysine methyltransferase G9a is a novel epigenetic target for the treatment of hepatocellular carcinoma. Oncotarget. 2017;8(13 ):21315–21326. doi:10.18632/oncotarget.1552828423509
  • Ramadoss S, Chen X, Wang CY. Histone demethylase KDM6B promotes epithelial-mesenchymal transition. J Biol Chem. 2012;287(53 ):44508–44517. doi:10.1074/jbc.M112.42490323152497
  • Monga SP. beta-catenin signaling and roles in liver homeostasis, injury, and tumorigenesis. Gastroenterology. 2015;148(7 ):1294–1310. doi:10.1053/j.gastro.2015.02.05625747274
  • Zhang J, Tian XJ, Xing J. Signal transduction pathways of EMT induced by TGF-beta, SHH, and WNT and their crosstalks. J Clin Med. 2016;5(4 ):41. doi:10.3390/jcm5040041
  • Feng B, Zhu Y, Su Z, et al. Basil polysaccharide attenuates hepatocellular carcinoma metastasis in rat by suppressing H3K9me2 histone methylation under hepatic artery ligation-induced hypoxia. Int J Biol Macromol. 2018;107(Pt B ):2171–2179. doi:10.1016/j.ijbiomac.2017.10.08829042275
  • Tan JZ, Yan Y, Wang XX, Jiang Y, Xu HE. EZH2: biology, disease, and structure-based drug discovery. Acta Pharmacol Sin. 2014;35(2 ):161–174. doi:10.1038/aps.2013.16124362326
  • Cai MY, Hou JH, Rao HL, et al. High expression of H3K27me3 in human hepatocellular carcinomas correlates closely with vascular invasion and predicts worse prognosis in patients. Mol Med. 2011;17(1–2 ):12–20. doi:10.2119/molmed.2010.0010320844838
  • Battistelli C, Cicchini C, Santangelo L, et al. The snail repressor recruits EZH2 to specific genomic sites through the enrollment of the lncRNA HOTAIR in epithelial-to-mesenchymal transition. Oncogene. 2017;36(7 ):942–955. doi:10.1038/onc.2016.26027452518
  • Li CP, Cai MY, Jiang LJ, et al. CLDN14 is epigenetically silenced by EZH2-mediated H3K27ME3 and is a novel prognostic biomarker in hepatocellular carcinoma. Carcinogenesis. 2016;37(6 ):557–566. doi:10.1093/carcin/bgw03627207647
  • Verdin E, Ott M. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol. 2015;16(4 ):258–264. doi:10.1038/nrm393125549891
  • Lei W, Zhang K, Pan X, et al. Histone deacetylase 1 is required for transforming growth factor-beta1-induced epithelial-mesenchymal transition. Int J Biochem Cell Biol. 2010;42(9 ):1489–1497. doi:10.1016/j.biocel.2010.05.00620580679
  • Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 1999;21(1 ):103–107. doi:10.1038/50479916800
  • Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet. 2000;25(3 ):338–342. doi:10.1038/7712410888886
  • Roche J, Nasarre P, Gemmill R, et al. Global decrease of histone H3K27 acetylation in ZEB1-induced epithelial to mesenchymal transition in lung cancer cells. Cancers (Basel). 2013;5(2 ):334–356. doi:10.3390/cancers502033424216980
  • Yang G, Zeng X, Wang M, Wu A. The TET2/E-cadherin/beta-catenin regulatory loop confers growth and invasion in hepatocellular carcinoma cells. Exp Cell Res. 2018;363(2 ):218–226. doi:10.1016/j.yexcr.2018.01.01129331390
  • Xu W, Liu H, Liu ZG, et al. Histone deacetylase inhibitors upregulate snail via smad2/3 phosphorylation and stabilization of snail to promote metastasis of hepatoma cells. Cancer Lett. 2018;420:1–13. doi:10.1016/j.canlet.2018.01.06829410023
  • Derynck R, Zhang YE. Smad-dependent and smad-independent pathways in TGF-beta family signalling. Nature. 2003;425(6958 ):577–584. doi:10.1038/nature0200614534577
  • Chang R, Zhang Y, Zhang P, Zhou Q. Snail acetylation by histone acetyltransferase p300 in lung cancer. Thorac Cancer. 2017;8(3 ):131–137. doi:10.1111/1759-7714.1240828296173
  • Yokomizo C, Yamaguchi K, Itoh Y, et al. High expression of p300 in HCC predicts shortened overall survival in association with enhanced epithelial mesenchymal transition of HCC cells. Cancer Lett. 2011;310(2 ):140–147. doi:10.1016/j.canlet.2011.06.03021764211
  • Song Y, Li ZX, Liu X, Wang R, Li LW, Zhang Q. The Wnt/beta-catenin and PI3K/Akt signaling pathways promote EMT in gastric cancer by epigenetic regulation via H3 lysine 27 acetylation. Tumour Biol. 2017;39(7 ):1010428317712617. doi:10.1177/101042831771261728671020
  • He Y, Meng XM, Huang C, et al. Long noncoding RNAs: novel insights into hepatocelluar carcinoma. Cancer Lett. 2014;344(1 ):20–27. doi:10.1016/j.canlet.2013.10.02124183851
  • Yuan JH, Yang F, Wang F, et al. A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell. 2014;25(5 ):666–681. doi:10.1016/j.ccr.2014.03.01024768205
  • Zhang J, Han C, Ungerleider N, et al. A transforming growth factor-beta and H19 signaling axis in tumor-initiating hepatocytes that regulates hepatic carcinogenesis. Hepatology. 2018.
  • Zhou Y, Fan RG, Qin CL, Jia J, Wu XD, Zha WZ. LncRNA-H19 activates CDC42/PAK1 pathway to promote cell proliferation, migration and invasion by targeting miR-15b in hepatocellular carcinoma. Genomics. 2018. doi:10.1016/j.ygeno.2018.12.009
  • Ge XS, Ma HJ, Zheng XH, et al. HOTAIR, a prognostic factor in esophageal squamous cell carcinoma, inhibits WIF-1 expression and activates Wnt pathway. Cancer Sci. 2013;104(12 ):1675–1682.24118380
  • Liang WC, Ren JL, Wong CW, et al. LncRNA-NEF antagonized epithelial to mesenchymal transition and cancer metastasis via cis-regulating FOXA2 and inactivating Wnt/beta-catenin signaling. Oncogene. 2018;37(11 ):1445–1456. doi:10.1038/s41388-017-0041-y29311643
  • Li Y, Guo D, Zhao Y, et al. Long non-coding RNA SNHG5 promotes human hepatocellular carcinoma progression by regulating miR-26a-5p/GSK3beta signal pathway. Cell Death Dis. 2018;9(9 ):888. doi:10.1038/s41419-018-1111-y30166525
  • Chen W, You J, Zheng Q, Zhu YY. Downregulation of lncRNA OGFRP1 inhibits hepatocellular carcinoma progression by AKT/mTOR and Wnt/beta-catenin signaling pathways. Cancer Manag Res. 2018;10:1817–1826. doi:10.2147/CMAR.S16491129997441
  • Zhu L, Yang N, Du G, et al. LncRNA CRNDE promotes the epithelial-mesenchymal transition of hepatocellular carcinoma cells via enhancing the Wnt/beta-catenin signaling pathway. J Cell Biochem. 2018.
  • Li SP, Xu HX, Yu Y, et al. LncRNA HULC enhances epithelial-mesenchymal transition to promote tumorigenesis and metastasis of hepatocellular carcinoma via the miR-200a-3p/ZEB1 signaling pathway. Oncotarget. 2016;7(27 ):42431–42446. doi:10.18632/oncotarget.988327285757
  • Yang T, He X, Chen A, Tan K, Du X. LncRNA HOTAIR contributes to the malignancy of hepatocellular carcinoma by enhancing epithelial-mesenchymal transition via sponging miR-23b-3p from ZEB1. Gene. 2018;670:114–122. doi:10.1016/j.gene.2018.05.06129778425
  • Dou C, Sun L, Jin X, et al. Long non-coding RNA CARLo-5 promotes tumor progression in hepatocellular carcinoma via suppressing miR-200b expression. Oncotarget. 2017;8(41 ):70172–70182. doi:10.18632/oncotarget.1959729050269
  • Lan T, Chang L, Wu L, Yuan Y. Downregulation of ZEB2-AS1 decreased tumor growth and metastasis in hepatocellular carcinoma. Mol Med Rep. 2016;14(5 ):4606–4612. doi:10.3892/mmr.2016.583627748842
  • Caramel J, Ligier M, Puisieux A. Pleiotropic roles for ZEB1 in cancer. Cancer Res. 2018;78(1 ):30–35. doi:10.1158/0008-5472.CAN-17-247629254997
  • Ma M, Xu H, Liu G, et al. MITA1, a novel energy stress-inducible lncRNA, promotes hepatocellular carcinoma metastasis. Hepatology. 2019. doi:10.1002/hep.30602
  • Cao SW, Huang JL, Chen J, et al. Long non-coding RNA UBE2CP3 promotes tumor metastasis by inducing epithelial-mesenchymal transition in hepatocellular carcinoma. Oncotarget. 2017;8(39 ):65370–65385. doi:10.18632/oncotarget.1852429029437
  • Xiao JN, Yan TH, Yu RM, et al. Long non-coding RNA UCA1 regulates the expression of snail2 by miR-203 to promote hepatocellular carcinoma progression. J Cancer Res Clin Oncol. 2017;143(6 ):981–990. doi:10.1007/s00432-017-2370-128271214
  • Sun J, Wei X, Xu L. Upregulation of lncRNA Sox2ot indicates a poor prognosis for patients with hepatocellular carcinoma and promotes cell invasion. Oncol Lett. 2018;16(1 ):1189–1195. doi:10.3892/ol.2018.872529963193
  • Zhou M, Zhang XY, Yu X. Overexpression of the long non-coding RNA SPRY4-IT1 promotes tumor cell proliferation and invasion by activating EZH2 in hepatocellular carcinoma. Biomed Pharmacother. 2017;85:348–354. doi:10.1016/j.biopha.2016.11.03527899259
  • Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11(9 ):597–610. doi:10.1038/nrg284320661255
  • Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3 ):203–222. doi:10.1038/nrd.2016.24628209991
  • Roderburg C, Trautwein C. Cell-specific functions of miRNA in the liver. J Hepatol. 2017;66(3 ):655–656. doi:10.1016/j.jhep.2016.09.01527702640
  • Hsu SH, Delgado ER, Otero PA, et al. MicroRNA-122 regulates polyploidization in the murine liver. Hepatology. 2016;64(2 ):599–615. doi:10.1002/hep.2857327016325
  • Jin Y, Wang J, Han J, Luo D, Sun Z. MiR-122 inhibits epithelial-mesenchymal transition in hepatocellular carcinoma by targeting snail1 and Snail2 and suppressing WNT/beta-cadherin signaling pathway. Exp Cell Res. 2017;360(2 ):210–217. doi:10.1016/j.yexcr.2017.09.01028890291
  • Wang N, Wang Q, Shen D, Sun X, Cao X, Wu D. Downregulation of microRNA-122 promotes proliferation, migration, and invasion of human hepatocellular carcinoma cells by activating epithelial-mesenchymal transition. Onco Targets Ther. 2016;9:2035–2047. doi:10.2147/OTT.S9237827103830
  • Liang HW, Wang N, Wang Y, et al. Hepatitis B virus-human chimeric transcript HBx-LINE1 promotes hepatic injury via sequestering cellular microRNA-122. J Hepatol. 2016;64(2 ):278–291. doi:10.1016/j.jhep.2015.09.01326409216
  • Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22(7 ):894–907. doi:10.1101/gad.164060818381893
  • Ding W, Dang H, You H, et al. miR-200b restoration and DNA methyltransferase inhibitor block lung metastasis of mesenchymal-phenotype hepatocellular carcinoma. Oncogenesis. 2012;1:e15. doi:10.1038/oncsis.2012.1523552699
  • Wu G, Zheng K, Xia S, et al. MicroRNA-655-3p functions as a tumor suppressor by regulating ADAM10 and beta-catenin pathway in hepatocellular carcinoma. J Exp Clin Cancer Res. 2016;35(1 ):89. doi:10.1186/s13046-016-0444-627259866
  • Li H, Wang H, Ren Z. MicroRNA-214-5p inhibits the invasion and migration of hepatocellular carcinoma cells by targeting wiskott-aldrich syndrome like. Cell Physiol Biochem. 2018;46(2 ):757–764. doi:10.1159/00048873429621773
  • Huang J, Wang Y, Guo Y, Sun S. Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology. 2010;52(1 ):60–70. doi:10.1002/hep.2366020578129
  • Wu LQ, Lu Y, Lu HJ, Lv ZH. Can E-cadherin and CD34 be used as indicators of prognosis for hepatocellular carcinoma patients? Clin Chem Lab Med. 2008;46(8 ):1122–1126. doi:10.1515/CCLM.2008.23118724809
  • Chen J, Zhao J, Ma R, Lin H, Liang X, Cai X. Prognostic significance of E-cadherin expression in hepatocellular carcinoma: a meta-analysis. PLoS One. 2014;9(8 ):e103952. doi:10.1371/journal.pone.010395225093414
  • Lachenmayer A, Toffanin S, Cabellos L, et al. Combination therapy for hepatocellular carcinoma: additive preclinical efficacy of the HDAC inhibitor panobinostat with sorafenib. J Hepatol. 2012;56(6 ):1343–1350. doi:10.1016/j.jhep.2012.01.00922322234
  • Catela Ivkovic T, Voss G, Cornella H, Ceder Y. microRNAs as cancer therapeutics: a step closer to clinical application. Cancer Lett. 2017;407:113–122. doi:10.1016/j.canlet.2017.04.00728412239
  • Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15(8 ):541–555. doi:10.1038/nrg376325022906
  • Zhang J, Han C, Ungerleider N, et al. A transforming growth factor-beta and H19 signaling axis in tumor-initiating hepatocytes that regulates hepatic carcinogenesis. Hepatology. 2019;69(4 ):1549–1563. doi:10.1002/hep.3015330014520
  • Ye Y, Xu Y, Lai Y, et al. Long non-coding RNA cox-2 prevents immune evasion and metastasis of hepatocellular carcinoma by altering M1/M2 macrophage polarization. J Cell Biochem. 2018;119(3 ):2951–2963. doi:10.1002/jcb.2650929131381
  • Ding G, Peng Z, Shang J, Kang Y, Ning H, Mao C. LincRNA-p21 inhibits invasion and metastasis of hepatocellular carcinoma through miR-9/E-cadherin cascade signaling pathway molecular mechanism. Onco Targets Ther. 2017;10:3241–3247. doi:10.2147/OTT.S13491028721075
  • Liu J, Lu C, Xiao M, Jiang F, Qu L, Ni R. Long non-coding RNA SNHG20 predicts a poor prognosis for HCC and promotes cell invasion by regulating the epithelial-to-mesenchymal transition. Biomed Pharmacother. 2017;89:857–863. doi:10.1016/j.biopha.2017.01.01128282787
  • Heller G, Altenberger C, Steiner I, et al. DNA methylation of microRNA-coding genes in non-small-cell lung cancer patients. J Pathol. 2018;245(4 ):387–398. doi:10.1002/path.507929570800
  • Gou X, Zhao X, Wang Z. Long noncoding RNA PVT1 promotes hepatocellular carcinoma progression through regulating miR-214. Cancer Biomark. 2017;20(4 ):511–519. doi:10.3233/CBM-17033128800314
  • Deng X, Zhao XF, Liang XQ, Chen R, Pan YF, Liang J. Linc00152 promotes cancer progression in hepatitis B virus-associated hepatocellular carcinoma. Biomed Pharmacother. 2017;90:100–108. doi:10.1016/j.biopha.2017.03.03128343069
  • Zhou T, Gao Y. Increased expression of LncRNA BANCR and its prognostic significance in human hepatocellular carcinoma. World J Surg Oncol. 2016;14(1 ):8. doi:10.1186/s12957-015-0757-526758762
  • Xu Y, Wang B, Zhang F, et al. Long non-coding RNA CCAT2 is associated with poor prognosis in hepatocellular carcinoma and promotes tumor metastasis by regulating snail2-mediated epithelial-mesenchymal transition. Onco Targets Ther. 2017;10:1191–1198. doi:10.2147/OTT.S12710028280353
  • Zeng B, Lin Z, Ye H, et al. Upregulation of LncDQ is Associated with poor prognosis and promotes tumor progression via epigenetic regulation of the EMT Pathway in HCC. Cell Physiol Biochem. 2018;46(3 ):1122–1133. doi:10.1159/00048884129669339
  • Wu Y, Yuan T, Wang WW, et al. Long noncoding RNA HOST2 promotes epithelial-mesenchymal transition, proliferation, invasion and migration of hepatocellular carcinoma cells by activating the JAK2-STAT3 signaling pathway. Cell Physiol Biochem. 2018;51(1 ):301–314. doi:10.1159/00049523130453302
  • Xia C, Zhang XY, Liu W, et al. LINC00857 contributes to hepatocellular carcinoma malignancy via enhancing epithelial-mesenchymal transition. J Cell Biochem. 2018.
  • Yao Z, Xiong Z, Li R, Liang H, Jia C, Deng M. Long non-coding RNA NRON is downregulated in HCC and suppresses tumour cell proliferation and metastasis. Biomed Pharmacother. 2018;104:102–109. doi:10.1016/j.biopha.2018.05.00629772429
  • Yang J, Li J, Liu B, et al. Long noncoding RNA AK021443 promotes cell proliferation and migration by regulating epithelial-mesenchymal transition in hepatocellular carcinoma cells. DNA Cell Biol. 2018;37(5 ):481–490. doi:10.1089/dna.2017.403029638164
  • Giovannini C, Fornari F, Dallo R, et al. MiR-199-3p replacement affects E-cadherin expression through notch1 targeting in hepatocellular carcinoma. Acta Histochem. 2018;120(2 ):95–102. doi:10.1016/j.acthis.2017.12.00429249451
  • Gou Y, Zhai F, Zhang L, Cui L. RUNX3 regulates hepatocellular carcinoma cell metastasis via targeting miR-186/E-cadherin/EMT pathway. Oncotarget. 2017;8(37 ):61475–61486. doi:10.18632/oncotarget.1842428977878
  • Tan HX, Wang Q, Chen LZ, et al. MicroRNA-9 reduces cell invasion and E-cadherin secretion in SK-Hep-1 cell. Med Oncol. 2010;27(3 ):654–660. doi:10.1007/s12032-009-9264-219572217
  • Drakaki A, Hatziapostolou M, Polytarchou C, et al. Functional microRNA high throughput screening reveals miR-9 as a central regulator of liver oncogenesis by affecting the PPARA-CDH1 pathway. BMC Cancer. 2015;15:542. doi:10.1186/s12885-015-1584-326206264
  • Kogure T, Kondo Y, Kakazu E, Ninomiya M, Kimura O, Shimosegawa T. Involvement of miRNA-29a in epigenetic regulation of transforming growth factor-beta-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Hepatol Res. 2014;44(8 ):907–919. doi:10.1111/hepr.1218823789939
  • Chang L, Li K, Guo T. miR-26a-5p suppresses tumor metastasis by regulating EMT and is associated with prognosis in HCC. Clin Transl Oncol. 2017;19(6 ):695–703. doi:10.1007/s12094-016-1582-127864783
  • Guo XF, Wang AY, Liu J. HIFs-MiR-33a-twsit1 axis can regulate invasiveness of hepatocellular cancer cells. Eur Rev Med Pharmacol Sci. 2016;20(14 ):3011–3016.27460728
  • Tian Z, Jiang H, Liu Y, et al. MicroRNA-133b inhibits hepatocellular carcinoma cell progression by targeting Sirt1. Exp Cell Res. 2016;343(2 ):135–147. doi:10.1016/j.yexcr.2016.03.02727090017
  • Huang JY, Zhang K, Chen DQ, et al. MicroRNA-451: epithelial-mesenchymal transition inhibitor and prognostic biomarker of hepatocelluar carcinoma. Oncotarget. 2015;6(21 ):18613–18630. doi:10.18632/oncotarget.431726164082
  • Xia W, Ma X, Li X, et al. miR-153 inhibits epithelial-to-mesenchymal transition in hepatocellular carcinoma by targeting snail. Oncol Rep. 2015;34(2 ):655–662. doi:10.3892/or.2015.400826035427
  • Liu Y, Li Y, Wang R, et al. MiR-130a-3p regulates cell migration and invasion via inhibition of Smad4 in gemcitabine resistant hepatoma cells. J Exp Clin Cancer Res. 2016;35:19. doi:10.1186/s13046-016-0444-626817584
  • Tu K, Zheng X, Dou C, et al. MicroRNA-130b promotes cell aggressiveness by inhibiting peroxisome proliferator-activated receptor gamma in human hepatocellular carcinoma. Int J Mol Sci. 2014;15(11 ):20486–20499. doi:10.3390/ijms15112048625387077
  • Lian J, Jing Y, Dong Q, et al. miR-192, a prognostic indicator, targets the SLC39A6/SNAIL pathway to reduce tumor metastasis in human hepatocellular carcinoma. Oncotarget. 2016;7(3 ):2672–2683. doi:10.18632/oncotarget.660326684241
  • Xu Q, Zhu Q, Zhou Z, et al. MicroRNA-876-5p inhibits epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma by targeting BCL6 corepressor like 1. Biomed Pharmacother. 2018;103:645–652. doi:10.1016/j.biopha.2018.04.03729679906
  • Hung CS, Liu HH, Liu JJ, et al. MicroRNA-200a and −200b mediated hepatocellular carcinoma cell migration through the epithelial to mesenchymal transition markers. Ann Surg Oncol. 2013;20(Suppl 3 ):S360–368. doi:10.1245/s10434-012-2482-422868917
  • Wang J, Yang X, Ruan B, et al. Overexpression of miR-200a suppresses epithelial-mesenchymal transition of liver cancer stem cells. Tumour Biol. 2015;36(4 ):2447–2456. doi:10.1007/s13277-014-2856-225412960
  • Liu D, Wu J, Liu M, Yin H, He J, Zhang B. Downregulation of miRNA-30c and miR-203a is associated with hepatitis C virus core protein-induced epithelial-mesenchymal transition in normal hepatocytes and hepatocellular carcinoma cells. Biochem Biophys Res Commun. 2015;464(4 ):1215–1221. doi:10.1016/j.bbrc.2015.07.10726210453
  • Wu WL, Wang WY, Yao WQ, Li GD. Suppressive effects of microRNA-16 on the proliferation, invasion and metastasis of hepatocellular carcinoma cells. Int J Mol Med. 2015;36(6 ):1713–1719. doi:10.3892/ijmm.2015.237926499886
  • Ma DN, Chai ZT, Zhu XD, et al. MicroRNA-26a suppresses epithelial-mesenchymal transition in human hepatocellular carcinoma by repressing enhancer of zeste homolog 2. J Hematol Oncol. 2016;9:1. doi:10.1186/s13045-015-0229-y26733151
  • Zhu SM, Chen CM, Jiang ZY, et al. MicroRNA-185 inhibits cell proliferation and epithelial-mesenchymal transition in hepatocellular carcinoma by targeting six2. Eur Rev Med Pharmacol Sci. 2016;20(9 ):1712–1719.27212161
  • Kim HS, Lee KS, Bae HJ, et al. MicroRNA-31 functions as a tumor suppressor by regulating cell cycle and epithelial-mesenchymal transition regulatory proteins in liver cancer. Oncotarget. 2015;6(10 ):8089–8102.25797269
  • Li DP, Fan J, Wu YJ, Xie YF, Zha JM, Zhou XM. MiR-155 up-regulated by TGF-beta promotes epithelial-mesenchymal transition, invasion and metastasis of human hepatocellular carcinoma cells in vitro. Am J Transl Res. 2017;9(6 ):2956–2965.28670383
  • Shen G, Lin Y, Yang X, Zhang J, Xu Z, Jia H. MicroRNA-26b inhibits epithelial-mesenchymal transition in hepatocellular carcinoma by targeting USP9X. BMC Cancer. 2014;14:393. doi:10.1186/1471-2407-14-39324890815
  • Zhang JG, Shi Y, Hong DF, et al. MiR-148b suppresses cell proliferation and invasion in hepatocellular carcinoma by targeting WNT1/beta-catenin pathway. Sci Rep. 2015;5:8087. doi:10.1038/srep0808725627001
  • Zhang JP, Zeng C, Xu L, Gong J, Fang JH, Zhuang SM. MicroRNA-148a suppresses the epithelial-mesenchymal transition and metastasis of hepatoma cells by targeting met/snail signaling. Oncogene. 2014;33(31 ):4069–4076. doi:10.1038/onc.2013.36924013226
  • Wang W, Lin H, Zhou L, et al. MicroRNA-30a-3p inhibits tumor proliferation, invasiveness and metastasis and is downregulated in hepatocellular carcinoma. Eur J Surg Oncol. 2014;40(11 ):1586–1594. doi:10.1016/j.ejso.2013.11.00824290372
  • Han LL, Yin XR, Zhang SQ. miR-103 promotes the metastasis and EMT of hepatocellular carcinoma by directly inhibiting LATS2. Int J Oncol. 2018;53(6 ):2433–2444.30272278
  • Zhao S, Zhang Y, Zheng X, et al. Loss of MicroRNA-101 promotes epithelial to mesenchymal transition in hepatocytes. J Cell Physiol. 2015;230(11 ):2706–2717. doi:10.1002/jcp.2499525808945
  • Zhou Y, Li Y, Ye J, et al. MicroRNA-491 is involved in metastasis of hepatocellular carcinoma by inhibitions of matrix metalloproteinase and epithelial to mesenchymal transition. Liver Int. 2013;33(8 ):1271–1280. doi:10.1111/liv.1219023725476
  • Hou X, Yang L, Jiang X, et al. Role of microRNA-141-3p in the progression and metastasis of hepatocellular carcinoma cell. Int J Biol Macromol. 2019;128:331–339. doi:10.1016/j.ijbiomac.2019.01.14430695725
  • Liang C, Xu Y, Ge H, et al. miR-564 inhibits hepatocellular carcinoma cell proliferation and invasion by targeting the GRB2-ERK1/2-AKT axis. Oncotarget. 2017;8(64 ):107543–107557. doi:10.18632/oncotarget.2250429296185
  • Gao J, Aksoy BA, Dogrusoz U. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269 ):pl1. doi:10.1126/scisignal.200408823550210