76
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Analysis of Mono-ADP-Ribosylation Levels in Human Colorectal Cancer

ORCID Icon, , , , , , , & show all
Pages 2401-2409 | Published online: 12 Mar 2021

References

  • Bray F, Ferlay J, Soerjomataram I, Siegel R, Torre L, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.2149230207593
  • Siegel RL, Miller KD, Goding Sauer A, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70(3):145–164. doi:10.3322/caac.2160132133645
  • Zhang L, Cao F, Zhang G, et al. Trends in and predictions of colorectal cancer incidence and mortality in china from 1990 to 2025. Front Oncol. 2019;9:98. doi:10.3389/fonc.2019.0009830847304
  • Butepage M, Eckei L, Verheugd P, Luscher B. Intracellular Mono-ADP-ribosylation in signaling and disease. Cells. 2015;4(4):569–595. doi:10.3390/cells404056926426055
  • Luscher B, Butepage M, Eckei L, Krieg S, Verheugd P, Shilton BH. ADP-ribosylation, a multifaceted posttranslational modification involved in the control of cell physiology in health and disease. Chem Rev. 2018;118(3):1092–1136. doi:10.1021/acs.chemrev.7b0012229172462
  • Nagtegaal ID, Arends MJ, Odze RD, Ak L. World Health Organization Classification of Tumours of the Colon and Rectum Revised. 5th ed. Lyon: IARC; 2019.
  • Fromowitz F, Viola M, Chao S, et al. ras p21 expression in the progression of breast cancer. Human Pathol. 1987;18(12):1268–1275. doi:10.1016/s0046-8177(87)80412-43315956
  • Qi H, Price BD, Day TA. Multiple roles for mono- and poly (ADP-ribose) in regulating stress responses. Trends Gene. 2019;35(2):159–172. doi:10.1016/j.tig.2018.12.002
  • Raval-Fernandes S, Kickhoefer V, Kitchen C, Rome L. Increased susceptibility of vault poly (ADP-ribose) polymerase-deficient mice to carcinogen-induced tumorigenesis. Cancer Res. 2005;65(19):8846–8852. doi:10.1158/0008-5472.CAN-05-077016204055
  • Wu CF, Xiao M, Wang YL, et al. PARP10 influences the proliferation of colorectal carcinoma cells, a preliminary study. Mol Biol. 2020;54(2):220–228. doi:10.31857/S0026898420020184
  • Tang Y, Wang Y, Yang L, et al. Inhibition of arginine ADP-ribosyltransferase 1 reduces the expression of poly (ADP-ribose) polymerase-1 in colon carcinoma. Int J Mol Med. 2013;32(1):130–136. doi:10.3892/ijmm.2013.137023652727
  • Feijs K, Kleine H, Braczynski A, et al. ARTD10 substrate identification on protein microarrays: regulation of GSK3β by mono-ADP-ribosylation. CCS. 2013;11(1):5. doi:10.1186/1478-811X-11-523332125
  • Kawajiri K, Kobayashi Y, Ohtake F, et al. Aryl hydrocarbon receptor suppresses intestinal carcinogenesis in ApcMin/+ mice with natural ligands. Proc Nat Acad Sci USA. 2009;106(32):13481–13486. doi:10.1073/pnas.090213210619651607
  • Gomez A, Bindesbøll C, Satheesh S, et al. Characterization of TCDD-inducible poly-ADP-ribose polymerase (TIPARP/ARTD14) catalytic activity. Biochem J. 2018;475(23):3827–3846. doi:10.1042/BCJ2018034730373764
  • Ougolkov A, Zhang B, Yamashita K, et al. Associations among beta-TrCP, an E3 ubiquitin ligase receptor, beta-catenin, and NF-kappaB in colorectal cancer. J Natl Cancer Inst. 2004;96(15):1161–1170. doi:10.1093/jnci/djh21915292388
  • Guo T, Zuo Y, Qian L, et al. ADP-ribosyltransferase PARP11 modulates the interferon antiviral response by mono-ADP-ribosylating the ubiquitin E3 ligase β-TrCP. Nat Microbiol. 2019;4(11):1872–1884. doi:10.1038/s41564-019-0428-330988430
  • Liang P, Zhang H, Wang G, et al. KPNB1, XPO7 and IPO8 mediate the translocation ofNF-κB/p65 into the nucleus. Traffic. 2013;14(11):1132–1143. doi:10.1111/tra.1209723906023
  • Lu T, Bao Z, Wang Y, et al. Karyopherinβ1 regulates proliferation of human glioma cells via Wnt/β-catenin pathway. Biochem Biophys Res Commun. 2016;478(3):1189–1197. doi:10.1016/j.bbrc.2016.08.09327568288
  • Di Girolamo M. Regulation of nucleocytoplasmic transport by ADP-ribosylation: the emerging role of karyopherin-β1 mono-ADP-ribosylation by ARTD15. Current Topics Microbiol Immunol. 2015;384:189–209. doi:10.1007/82_2014_421
  • Grimaldi G, Schembri L, Monte ML, et al. PARP12-catalyzed mono-ADP-ribosylation of Golgin-97 controls the transport of E-cadherin. bioRxiv. In press 2020. doi:10.1101/2020.05.05.078097
  • Jwa M, Chang P. PARP16 is a tail-anchored endoplasmic reticulum protein required for the PERK- and IRE1α-mediated unfolded protein response. Nature Cell Biol. 2012;14(11):1223–1230. doi:10.1038/ncb259323103912
  • Feng Y, Jin D, Sokol E, Reinhardt F, Miller D, Gupta P. Cancer-specific PERK signaling drives invasion and metastasis through CREB3L1. Nat Commun. 2017;8(1):1079. doi:10.1038/s41467-017-01052-y
  • Fabrizio G, Di Paola S, Stilla A, et al. ARTC1-mediated ADP-ribosylation of GRP78/BiP: a new player in endoplasmic-reticulum stress responses. Cell Mol Life Sci. 2015;72(6):1209–1225. doi:10.1007/s00018-014-1745-625292337
  • Chang YJ, Chen WY, Huang CY, Liu HH, Wei PL. Glucose-regulated protein 78 (GRP78) regulates colon cancer metastasis through EMT biomarkers and the NRF-2/HO-1 pathway. Tumour Biol. 2015;36(3):1859–1869. doi:10.1007/s13277-014-2788-x25431258
  • Verheugd P, Forst A, Milke L, et al. Regulation of NF-κB signalling by the mono-ADP-ribosyltransferase ARTD10. Nature Commun. 2013;4:1683. doi:10.1038/ncomms267223575687
  • Yaron A, Gonen H, Alkalay I, et al. Inhibition of NF-kappa-B cellular function via specific targeting of the I-kappa-B-ubiquitin ligase. EMBO J. 1997;16(21):6486–6494. doi:10.1093/emboj/16.21.64869351830
  • Yao N, Chen Q, Shi W, Tang L, Fu Y. PARP14 promotes the proliferation and gemcitabine chemoresistance of pancreatic cancer cells through activation of NF-κB pathway. Mol Carcinogene. 2019;58(7):1291–1302. doi:10.1002/mc.23011
  • Xie B, Nie S, Hu G, et al. The Involvement of NF-κB/Klotho signaling in colorectal cancer cell survival and invasion. Pathol Oncol Res. 2019;25(4):1553–1565. doi:10.1007/s12253-018-0493-630612312
  • Li M, Tang Y, Li Q, Xiao M, Yang Y, Wang Y. Mono-ADP-ribosylation of H3R117 traps 5mC hydroxylase TET1 to impair demethylation of tumor suppressor gene TFPI2. Oncogene. 2019;38(18):3488–3503. doi:10.1038/s41388-018-0671-830651599
  • Ling F, Tang Y, Li M, et al. Mono-ADP-ribosylation of histone 3 at arginine-117 promotes proliferation through its interaction with P300. Oncotarget. 2017;8:72773–72787. doi:10.18632/oncotarget.2034729069825
  • Mehrotra P, Riley J, Patel R, Li F, Voss L, Goenka S. PARP-14 functions as a transcriptional switch for Stat6-dependent gene activation. J Biol Chem. 2011;286(3):1767–1776. doi:10.1074/jbc.M110.15776821081493
  • Wang Z, Grosskurth S, Cheung T, et al. Pharmacological inhibition of PARP6 triggers multipolar spindle formation and elicits therapeutic effects in breast cancer. Cancer Res. 2018;78(23):6691–6702. doi:10.1158/0008-5472.CAN-18-136230297535
  • Tanuma S, Shibui Y, Oyama T, Uchiumi F, Abe H. Targeting poly (ADP-ribose) glycohydrolase to draw apoptosis codes in cancer. Biochem Pharmacol. 2019;167:163–172. doi:10.1016/j.bcp.2019.06.00431176615
  • Munnur D, Ahel I. Reversible mono-ADP-ribosylation of DNA breaks. FEBS J. 2017;284(23):4002–4016. doi:10.1111/febs.1429729054115
  • van den Broek E, den Uil S, Coupé V, et al. MACROD2 expression predicts response to 5-FU-based chemotherapy in stage III colon cancer. Oncotarget. 2018;9(50):29445–29452. doi:10.18632/oncotarget.2565530034629
  • Van Meter M, Mao Z, Gorbunova V, Seluanov A. Repairing split ends: SIRT6, mono-ADP ribosylation and DNA repair. Aging. 2011;3(9):829–835. doi:10.18632/aging.10038921946623
  • Golia B, Moeller G, Jankevicius G, et al. ATM induces MacroD2 nuclear export upon DNA damage. Nucleic Acids Res. 2017;45(1):244–254. doi:10.1093/nar/gkw90428069995
  • Baran B, Mert Ozupek N, Yerli Tetik N, Acar E, Bekcioglu O, Baskin Y. Difference between left-sided and right-sided colorectal cancer: a focused review of literature. Gastroenterol Res. 2018;11(4):264–273. doi:10.14740/gr1062w