208
Views
7
CrossRef citations to date
0
Altmetric
Original Research

Automatic Segmentation of Clinical Target Volume and Organs-at-Risk for Breast Conservative Radiotherapy Using a Convolutional Neural Network

ORCID Icon, , , ORCID Icon, , ORCID Icon, ORCID Icon, , , , , & ORCID Icon show all
Pages 8209-8217 | Published online: 02 Nov 2021

References

  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.31912902
  • Veronesi U, Cascinelli N, Mariani L, et al. Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Engl J Med. 2002;347(16):1227–1232. doi:10.1056/NEJMoa02098912393819
  • Darby S, McGale P, Correa C, et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet. 2011;378:1707–1716.22019144
  • Andrianarison VA, Laouiti M, Fargier-Bochaton O, et al. Contouring workload in adjuvant breast cancer radiotherapy. Cancer Radiother. 2018;22:747–753. doi:10.1016/j.canrad.2018.01.00830322819
  • Jensen NK, Mulder D, Lock M, et al. Dynamic contrast enhanced CT aiding gross tumor volume delineation of liver tumors: an interobserver variability study. Radiother Oncol. 2014;111:153–157. doi:10.1016/j.radonc.2014.01.02624631143
  • Steenbergen P, Haustermans K, Lerut E, et al. Prostate tumor delineation using multiparametric magnetic resonance imaging: inter-observer variability and pathology validation. Radiother Oncol. 2015;115:186–190. doi:10.1016/j.radonc.2015.04.01225935742
  • Wong WKH, Leung LHT, Kwong DLW. Evaluation and optimization of the parameters used in multiple-atlas-based segmentation of prostate cancers in radiation therapy. Brit J Radiol. 2016;89. doi:10.1259/bjr.20140732
  • Tong N, Gou SP, Yang SY, Ruan D, Sheng K. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Med Phys. 2018;45:4558–4567. doi:10.1002/mp.1314730136285
  • Fortunati V, Verhaart RF, van der Lijn F, et al. Tissue segmentation of head and neck CT images for treatment planning: a multiatlas approach combined with intensity modeling. Med Phys. 2013;40:071905. doi:10.1118/1.481097123822442
  • Tao CJ, Yi JL, Chen NY, et al. Multi-subject atlas-based auto-segmentation reduces interobserver variation and improves dosimetric parameter consistency for organs at risk in nasopharyngeal carcinoma: a multi-institution clinical study. Radiother Oncol. 2015;115:407–411. doi:10.1016/j.radonc.2015.05.01226025546
  • Men K, Dai JR, Li YX. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks. Med Phys. 2017;44:6377–6389. doi:10.1002/mp.1260228963779
  • Ibtehaz N, Rahman MS. MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw. 2020;121:74–87. doi:10.1016/j.neunet.2019.08.02531536901
  • Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. Lect Notes Comput Sci. 2015;9351:234–241.
  • Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39:2481–2495. doi:10.1109/TPAMI.2016.264461528060704
  • Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39:640–651. doi:10.1109/TPAMI.2016.257268327244717
  • Men K, Zhang T, Chen XY, et al. Fully automatic and robust segmentation of the clinical target volume for radiotherapy of breast cancer using big data and deep learning. Phys Med. 2018;50:13–19. doi:10.1016/j.ejmp.2018.05.00629891089
  • Ibragimov B, Xing L. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks. Med Phys. 2017;44:547–557. doi:10.1002/mp.1204528205307
  • Chan JW, Kearney V, Haaf S, et al. A convolutional neural network algorithm for automatic segmentation of head and neck organs at risk using deep lifelong learning. Med Phys. 2019;46:2204–2213. doi:10.1002/mp.1349530887523
  • Men K, Chen X, Zhang Y, et al. Deep deconvolutional neural network for target segmentation of nasopharyngeal cancer in planning computed tomography images. Front Oncol. 2017;7:315. doi:10.3389/fonc.2017.0031529376025
  • Liu Z, Liu X, Xiao B, et al. Segmentation of organs-at-risk in cervical cancer CT images with a convolutional neural network. Phys Med. 2020;69:184–191. doi:10.1016/j.ejmp.2019.12.00831918371
  • Offersen BV, Boersma LJ, Kirkove C, et al. ESTRO consensus guideline on target volume delineation for elective radiation therapy of early stage breast cancer. Radiother Oncol. 2015;114:3–10. doi:10.1016/j.radonc.2014.11.03025630428
  • R.T.O. Group, Breast Cancer Atlas for Radiation Therapy Planning: Consensus Definition; 2018.
  • Dubey SR, Chakraborty S, Roy SK, Mukherjee S, Singh SK, Chaudhuri BB. diffGrad: an optimization method for convolutional neural networks. IEEE Trans Neural Netw Learn Syst. 2019;31(11):4500–4511. doi:10.1109/TNNLS.2019.2955777
  • Kalayeh MM, Shah M. Training faster by separating modes of variation in batch-normalized models. IEEE Trans Pattern Anal Mach Intell. 2020;42:1483–1500. doi:10.1109/TPAMI.2019.289578130703010
  • Lennerts E, Coucke P. [The radiotherapy journey: from information to treatment]. Rev Med Liege. 2014;69(Suppl 1):3–8. Romanian.
  • Eldesoky AR, Yates ES, Nyeng TB, et al. Internal and external validation of an ESTRO delineation guideline - dependent automated segmentation tool for loco-regional radiation therapy of early breast cancer. Radiother Oncol. 2016;121:424–430. doi:10.1016/j.radonc.2016.09.00527697296
  • Jameson MG, Holloway LC, Vial PJ, Vinod SK, Metcalfe PE. A review of methods of analysis in contouring studies for radiation oncology. J Med Imaging Radiat Oncol. 2010;54:401–410. doi:10.1111/j.1754-9485.2010.02192.x20958937
  • Barillot I, Chauvet B, Hannoun Lévi JM, Lisbona A, Leroy T, Mahé MA. [The irradiation process]. Cancer Radiother. 2016;20(Suppl):S8–S19. French. doi:10.1016/j.canrad.2016.07.01327516048
  • Lee LK, Liew SC, Thong WJ. A review of image segmentation methodologies in medical image. Lect Notes Electr Eng. 2015;315.
  • Liu Z, Liu F, Chen W, et al. Automatic segmentation of clinical target volumes for post-modified radical mastectomy radiotherapy using convolutional neural networks. Front Oncol. 2021;10:581347.33665160
  • Gregucci F, Fozza A, Falivene S, et al; R. Italian Society of, G. Clinical oncology breast, present clinical practice of breast cancer radiotherapy in Italy: a nationwide survey by the Italian Society of Radiotherapy and Clinical Oncology (AIRO) Breast Group. Radiol Med. 2020;125(7):674–682. doi:10.1007/s11547-020-01147-532078120
  • Batumalai V, Koh ES, Delaney GP, et al. Interobserver variability in clinical target volume delineation in tangential breast irradiation: a comparison between radiation oncologists and radiation therapists. Clin Oncol. 2011;23:108–113. doi:10.1016/j.clon.2010.10.004
  • Mast M, Coerkamp E, Heijenbrok M, et al. Target volume delineation in breast conserving radiotherapy: are co-registered CT and MR images of added value? Radiat Oncol. 2014;9(1):65. doi:10.1186/1748-717X-9-6524571843
  • van der Leij F, Elkhuizen PHM, Janssen TM, et al. Target volume delineation in external beam partial breast irradiation: less inter-observer variation with preoperative- compared to postoperative delineation. Radiother Oncol. 2014;110:467–470. doi:10.1016/j.radonc.2013.10.03324262820
  • Balagopal A, Kazemifar S, Nguyen D, et al. Fully automated organ segmentation in male pelvic CT images. Phys Med Biol. 2018;63:245015. doi:10.1088/1361-6560/aaf11c30523973