110
Views
6
CrossRef citations to date
0
Altmetric
Review

Involvement of Non-Coding RNAs in Chemo- and Radioresistance of Nasopharyngeal Carcinoma

&
Pages 8781-8794 | Published online: 23 Nov 2021

References

  • Chen Y-P, Chan ATC, Le Q-T, Blanchard P, Sun Y, Ma J. Nasopharyngeal carcinoma. Lancet. 2019;394(10192):64–80. doi:10.1016/S0140-6736(19)30956-031178151
  • Sun X-S, Li X-Y, Chen Q-Y, Tang L-Q, Mai H-Q. Future of radiotherapy in nasopharyngeal carcinoma. BJR. 2019;92(1102):20190209. doi:10.1259/bjr.2019020931265322
  • Perri F, Della Vittoria Scarpati G, Caponigro F, et al. Management of recurrent nasopharyngeal carcinoma: current perspectives. OTT. 2019;12:1583–1591. doi:10.2147/OTT.S188148
  • Wang C, Yang Y, Sun L, et al. Baicalin reverses radioresistance in nasopharyngeal carcinoma by downregulating autophagy. Cancer Cell Int. 2020;20(1):35. doi:10.1186/s12935-020-1107-432021564
  • Guan S, Wei J, Huang L, Wu L. Chemotherapy and chemo-resistance in nasopharyngeal carcinoma. Eur J Med Chem. 2020;207:112758. doi:10.1016/j.ejmech.2020.11275832858472
  • Haider T, Pandey V, Banjare N, Gupta PN, Soni V. Drug resistance in cancer: mechanisms and tackling strategies. Pharmacol Rep. 2020;72(5):1125–1151. doi:10.1007/s43440-020-00138-732700248
  • Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. IJMS. 2020;21(9):3233. doi:10.3390/ijms21093233
  • Luo G, Jin K, Deng S, et al. Roles of CA19-9 in pancreatic cancer: biomarker, predictor and promoter. Biochimica Et Biophysica Acta (BBA) - Rev Cancer. 2021;1875(2):188409. doi:10.1016/j.bbcan.2020.188409
  • Bautista-Sánchez D, Arriaga-Canon C, Pedroza-Torres A, et al. The promising role of miR-21 as a cancer biomarker and its importance in RNA-based therapeutics. Mol Ther - Nucleic Acids. 2020;20:409–420. doi:10.1016/j.omtn.2020.03.00332244168
  • Lei F, Lei T, Huang Y, Yang M, Liao M, Huang W. Radio-Susceptibility of Nasopharyngeal Carcinoma: Focus on Epstein- Barr Virus, MicroRNAs, Long Non-Coding RNAs and Circular RNAs. CMP. 2020;13(3):192-205. doi:10.2174/1874467213666191227104646.
  • Guan Y, Zhang M, Chen X, Zhang Q, Liu S, Lnc ZY. RNA SNHG20 participated in proliferation, invasion, and migration of breast cancer cells via miR‐495. J Cell Biochem. 2018;119(10):7971–7981. doi:10.1002/jcb.2658829236315
  • Yu W, Sun Z, Yang L, et al. lncRNA PTAR promotes NSCLC cell proliferation, migration and invasion by sponging microRNA‑101. Mol Med Rep. 2019. doi:10.3892/mmr.2019.10646
  • Song W, Wang J, Liu H, et al. Effects of LncRNA Lnc-LIF-AS on cell proliferation, migration and invasion in a human cervical cancer cell line. Cytokine. 2019;120:165–175. doi:10.1016/j.cyto.2019.05.00431085454
  • Bayraktar R, Van Roosbroeck K. miR-155 in cancer drug resistance and as target for miRNA-based therapeutics. Cancer Metastasis Rev. 2018;37(1):33–44. doi:10.1007/s10555-017-9724-729282605
  • Ebahimzadeh K, Shoorei H, Mousavinejad SA, et al. Emerging role of non-coding RNAs in response of cancer cells to radiotherapy. Pathol - Res Pract. 2021;218:153327. doi:10.1016/j.prp.2020.15332733422780
  • Tian Y, Tang L, Yi P, et al. MiRNAs in radiotherapy resistance of nasopharyngeal carcinoma. J Cancer. 2020;11(13):3976–3985. doi:10.7150/jca.4273432328201
  • Wang S, Zhang R, Claret FX, Yang H. Involvement of microRNA-24 and DNA methylation in resistance of nasopharyngeal carcinoma to ionizing radiation. Mol Cancer Ther. 2014;13(12):3163–3174. doi:10.1158/1535-7163.MCT-14-031725319395
  • Huang T, Yin L, Wu J, et al. MicroRNA-19b-3p regulates nasopharyngeal carcinoma radiosensitivity by targeting TNFAIP3/NF-κB axis. J Exp Clin Cancer Res. 2016;35(1):188. doi:10.1186/s13046-016-0465-127919278
  • Bao B, Li Y, Ahmad A, et al. Targeting CSC-related miRNAs for cancer therapy by natural agents. CDT. 2012;13(14):1858–1868. doi:10.2174/138945012804545515
  • Barker HE, Paget JTE, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer. 2015;15(7):409–425. doi:10.1038/nrc395826105538
  • Doronkin S, Djagaeva I, Beckendorf SK. CSN5/Jab1 mutations affect axis formation in the Drosophila oocyte by activating a meiotic checkpoint. 12.
  • Su M, Wang H, Wang W, et al. LncRNAs in DNA damage response and repair in cancer cells. Acta Biochim Biophys Sin (Shanghai). 2018;50(5):433–439. doi:10.1093/abbs/gmy02229554194
  • Nie X, Guo E, Wu C, et al. SALL4 induces radioresistance in nasopharyngeal carcinoma via the ATM/Chk2/p53 pathway. Cancer Med. 2019;8(4):1779–1792. doi:10.1002/cam4.205630907073
  • Hu X, Jiang H, Jiang X. Downregulation of lncRNA ANRIL inhibits proliferation, induces apoptosis, and enhances radiosensitivity in nasopharyngeal carcinoma cells through regulating miR-125a. Cancer Biol Ther. 2017;18(5):331–338. doi:10.1080/15384047.2017.131034828402230
  • Manvati MKS, Khan J, Verma N, Dhar PK. Association of miR-760 with cancer: an overview. Gene. 2020;747:144648. doi:10.1016/j.gene.2020.14464832251703
  • Zhang T, Sun Q, Liu T, et al. MiR-451 increases radiosensitivity of nasopharyngeal carcinoma cells by targeting ras-related protein 14 (RAB14). Tumor Biol. 2014;35(12):12593–12599. doi:10.1007/s13277-014-2581-x
  • Wang T, Dong X-M, Zhang F-L, Zhang J-R. miR-206 enhances nasopharyngeal carcinoma radiosensitivity by targeting IGF1. Kaohsiung J Med Sci. 2017;33(9):427–432. doi:10.1016/j.kjms.2017.05.01528865599
  • Nohata N, Hanazawa T, Enokida H, Seki N. microRNA-1/133a and microRNA-206/133b clusters: dysregulation and functional roles in human cancers. Oncotarget. 2012;3:1. doi:10.18632/oncotarget.42422287500
  • Chen QY, Jiao DM, Wang J, Hu H, Lu W. miR-206 regulates cisplatin resistance and EMT in human lung adenocarcinoma cells partly by targeting MET. Oncotarget. 2016;7(17):24510–24526. doi:10.18632/oncotarget.822927014910
  • Zhang Y, Zheng L, Lin S, Liu Y, Wang Y, Gao F. MiR-124 enhances cell radiosensitivity by targeting PDCD6 in nasopharyngeal carcinoma. Int J Clin Exp Pathol. 2017;10(12):11461.31966501
  • Guo Y, Zhai J, Zhang J, Ni C, Zhou H. Improved radiotherapy sensitivity of nasopharyngeal carcinoma cells by miR-29-3p targeting COL1A1 3ʹ-UTR. Med Sci Monit. 2019;25:3161–3169. doi:10.12659/MSM.91562431034464
  • Kong L, Wei Q, Hu X, Chen L, Li J. miR-193a-3p promotes radio-resistance of nasopharyngeal cancer cells by targeting SRSF2 gene and hypoxia signaling pathway. Med Sci Monit Basic Res. 2019;25:53–62. doi:10.12659/MSMBR.91457230773530
  • Huang Y, Tan D, Xiao J, Li Q, Zhang X, Luo Z. miR-150 contributes to the radioresistance in nasopharyngeal carcinoma cells by targeting glycogen synthase kinase-3β. J Can Res Ther. 2018;14(1):111. doi:10.4103/jcrt.JCRT_682_17
  • He W, Jin H, Liu Q, Sun Q. miR‑182‑5p contributes to radioresistance in nasopharyngeal carcinoma by regulating BNIP3 expression. Mol Med Rep. 2020;23(2):130. doi:10.3892/mmr.2020.1176933313953
  • Wang F, Lu J, Peng X, et al. Integrated analysis of microRNA regulatory network in nasopharyngeal carcinoma with deep sequencing. J Exp Clin Cancer Res. 2016;35(1):17. doi:10.1186/s13046-016-0292-426795575
  • Guo P, Lan J, Ge J, et al. MiR-26a enhances the radiosensitivity of glioblastoma multiforme cells through targeting of ataxia–telangiectasia mutated. Exp Cell Res. 2014;320(2):200–208. doi:10.1016/j.yexcr.2013.10.02024211747
  • Liu S, Pan X, Yang Q, et al. MicroRNA-18a enhances the radiosensitivity of cervical cancer cells by promoting radiation-induced apoptosis. Oncol Rep. 2015;33(6):2853–2862. doi:10.3892/or.2015.392925963391
  • Wang P, Zou F, Zhang X, et al. microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Res. 2009;69(20):8157–8165. doi:10.1158/0008-5472.CAN-09-199619826040
  • Tang Y, Cui Y, Li Z, et al. Radiation-induced miR-208a increases the proliferation and radioresistance by targeting p21 in human lung cancer cells. J Exp Clin Cancer Res. 2016;35(1):7. doi:10.1186/s13046-016-0285-326754670
  • Chen G, Zhu W, Shi D, et al. MicroRNA-181a sensitizes human malignant glioma U87MG cells to radiation by targeting Bcl-2. Oncol Rep. 2010;23:4. doi:10.3892/or_00000725
  • Edison N, Curtz Y, Paland N, et al. Degradation of Bcl-2 by XIAP and ARTS promotes apoptosis. Cell Rep. 2017;21(2):442–454. doi:10.1016/j.celrep.2017.09.05229020630
  • Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2(9):647–656. doi:10.1038/nrc88312209154
  • Qu C, Liang Z, Huang J, et al. MiR-205 determines the radioresistance of human nasopharyngeal carcinoma by directly targeting PTEN. Cell Cycle. 2012;11(4):785–796. doi:10.4161/cc.11.4.1922822374676
  • Mao Y, Wu S, Zhao R, Deng Q. MiR-205 promotes proliferation, migration and invasion of nasopharyngeal carcinoma cells by activation of AKT signalling. J Int Med Res. 2016;44(2):231–240. doi:10.1177/030006051557655626880795
  • Ou H, Li Y, Kang M. Activation of miR-21 by STAT3 induces proliferation and suppresses apoptosis in nasopharyngeal carcinoma by targeting PTEN gene. PLoS One. 2014;9(11):e109929. doi:10.1371/journal.pone.010992925365510
  • Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010;40(2):179–204. doi:10.1016/j.molcel.2010.09.01920965415
  • Lung RW-M, Hau P-M, Yu KH-O, et al. EBV-encoded miRNAs target ATM-mediated response in nasopharyngeal carcinoma: regulation of ATM by EBV-miRNAs in NPC. J Pathol. 2018;244(4):394–407. doi:10.1002/path.501829230817
  • Pan Y, Zhang Q, Atsaves V, Yang H, Claret FX. Suppression of Jab1/CSN5 induces radio- and chemo-sensitivity in nasopharyngeal carcinoma through changes to the DNA damage and repair pathways. Oncogene. 2013;32(22):2756–2766. doi:10.1038/onc.2012.29422797071
  • Pan Y, Zhang Q, Tian L, et al. Jab1/CSN5 negatively regulates p27 and plays a role in the pathogenesis of nasopharyngeal carcinoma. Cancer Res. 2012;72(7):1890–1900. doi:10.1158/0008-5472.CAN-11-347222350412
  • Wu J, Lv Q, He J, et al. MicroRNA-188 suppresses G1/S transition by targeting multiple cyclin/CDK complexes. Cell Commun Signaling. 2014;12:1–3.
  • Lu J, He M-L, Wang L, et al. MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. Cancer Res. 2011;71(1):225–233. doi:10.1158/0008-5472.CAN-10-185021199804
  • Liang S, Zhang N, Deng Y, et al. miR-663 promotes NPC cell proliferation by directly targeting CDKN2A. Mol Med Rep. 2017;16(4):4863–4870. doi:10.3892/mmr.2017.712928765905
  • Autuoro J, Pirnie S, Carmichael G. Long noncoding RNAs in imprinting and X chromosome inactivation. Biomolecules. 2014;4(1):76–100. doi:10.3390/biom401007624970206
  • Di Gesualdo F, Capaccioli S, Lulli M. A pathophysiological view of the long non-coding RNA world. Oncotarget. 2014;5(22):10976–10996. doi:10.18632/oncotarget.277025428918
  • Yang -Q-Q, Deng Y-F. Genome-wide analysis of long non-coding RNA in primary nasopharyngeal carcinoma by microarray. Histopathology. 2015;66(7):1022–1030. doi:10.1111/his.1261625406670
  • Schmitt AM, Chang HY. Long RNAs wire up cancer growth. Nature. 2013;500(7464):536–537. doi:10.1038/nature1254823945584
  • Nie Y, Liu X, Qu S, Song E, Zou H, Gong C. Long non-coding RNA HOTAIR is an independent prognostic marker for nasopharyngeal carcinoma progression and survival. Cancer Sci. 2013;104(4):458–464. doi:10.1111/cas.1209223281836
  • Han Q, Li L, Liang H, Li Y, Xie J, Wang Z. Downregulation of lncRNA X inactive specific transcript (XIST) suppresses cell proliferation and enhances radiosensitivity by upregulating mir-29c in nasopharyngeal carcinoma cells. Med Sci Monit. 2017;23:4798–4807. doi:10.12659/MSM.90537028985197
  • Ma X, Zhou J, Liu J, et al. LncRNA ANCR promotes proliferation and radiation resistance of nasopharyngeal carcinoma by inhibiting PTEN expression. OTT. 2018;11:8399–8408. doi:10.2147/OTT.S182573
  • Zhong Q, Chen Y, Chen Z. LncRNA MINCR regulates irradiation resistance in nasopharyngeal carcinoma cells via the microRNA-223/ZEB1 axis. Cell Cycle. 2020;19(1):53–66. doi:10.1080/15384101.2019.169217631760895
  • He Y, Jing Y, Wei F, et al. Long non-coding RNA PVT1 predicts poor prognosis and induces radioresistance by regulating DNA repair and cell apoptosis in nasopharyngeal carcinoma. Cell Death Dis. 2018;9(2):235. doi:10.1038/s41419-018-0265-y29445147
  • Wang Y, Chen W, Lian J, et al. The lncRNA PVT1 regulates nasopharyngeal carcinoma cell proliferation via activating the KAT2A acetyltransferase and stabilizing HIF-1α. Cell Death Differ. 2020;27(2):695–710. doi:10.1038/s41418-019-0381-y31320749
  • Wang Q, Fan H, Liu Y, et al. Curcumin enhances the radiosensitivity in nasopharyngeal carcinoma cells involving the reversal of differentially expressed long non-coding RNAs. Int J Oncol. 2014;44(3):858–864. doi:10.3892/ijo.2013.223724379026
  • Zhang Z, Zhu Z, Watabe K, et al. Negative regulation of lncRNA GAS5 by miR-21. Cell Death Differ. 2013;20(11):1558–1568. doi:10.1038/cdd.2013.11023933812
  • Liu X, Sun M, Nie F, et al. Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer. Mol Cancer. 2014;13(1):92. doi:10.1186/1476-4598-13-9224775712
  • Han YY, Liu K, Xie J, Li F, Wang Y, Yan B. LINC00114 promoted nasopharyngeal carcinoma progression and radioresistance in vitro and in vivo through regulating ERK/JNK signaling pathway via targeting miR-203. Eur Rev Med Pharmacol Sci. 2020;24:2491–2504.32196600
  • Huang D, Zhu X, Wang Y, Yu H, Pu Y. Long non-coding RNA FAM133B-2 represses the radio-resistance of nasopharyngeal cancer cells by targeting miR-34a-5p/CDK6 axis. Aging. 2020;12(17):16936–16950. doi:10.18632/aging.10360032889799
  • Lu Y, Li T, Wei G, et al. The long non-coding RNA NEAT1 regulates epithelial to mesenchymal transition and radioresistance in through miR-204/ZEB1 axis in nasopharyngeal carcinoma. Tumor Biol. 2016;37(9):11733–11741. doi:10.1007/s13277-015-4773-4
  • Paiar F, Di Cataldo V, Zei G, et al. Role of chemotherapy in nasopharyngeal carcinoma. Oncol Rev. 2012;6(1):1. doi:10.4081/oncol.2012.e1
  • Zheng T, Wang J, Chen X, Liu L. Role of microRNA in anticancer drug resistance. Int J Cancer. 2010;126(1):2–10. doi:10.1002/ijc.2478219634138
  • Donzelli S, Mori F, Biagioni F, et al. MicroRNAs: short non-coding players in cancer chemoresistance. Mol and Cell Ther. 2014;2(1):16. doi:10.1186/2052-8426-2-1626056584
  • Hummel R, Hussey DJ, Haier J. MicroRNAs Predictors and modifiers of chemo- and radiotherapy in different tumour types.pdf. Eur J Cancer. 2010;46:298–311.19948396
  • Jiang Q, Zhou Y, Yang H, et al. A directly negative interaction of miR-203 and ZEB2 modulates tumor stemness and chemotherapy resistance in nasopharyngeal carcinoma. Oncotarget. 2016;7(41):67288–67301. doi:10.18632/oncotarget.1169127589832
  • Yang J, Wu S-P, Wang W-J, et al. A novel miR-200c/c-myc negative regulatory feedback loop is essential to the EMT process, CSC biology and drug sensitivity in nasopharyngeal cancer. Exp Cell Res. 2020;391(2):111817. doi:10.1016/j.yexcr.2020.11181732179097
  • Shao Q, Zhang P, Ma Y, et al. MicroRNA-139-5p affects cisplatin sensitivity in human nasopharyngeal carcinoma cells by regulating the epithelial-to-mesenchymal transition. Gene. 2018;652:48–58. doi:10.1016/j.gene.2018.02.00329427737
  • Lung RW, Tong JH, Ip L, et al. EBV–encoded miRNAs can sensitize nasopharyngeal carcinoma to chemotherapeutic drugs by targeting BRCA1. J Cell Mol Med. 2020;24(22):13523–13535. doi:10.1111/jcmm.1600733074587
  • Yang G-D, Huang T-J, Peng L-X, et al. Epstein-Barr virus_encoded LMP1 upregulates MicroRNA-21 to promote the resistance of nasopharyngeal carcinoma cells to cisplatin-induced apoptosis by suppressing PDCD4 and Fas-L. PLoS One. 2013;8(10):e78355. doi:10.1371/journal.pone.007835524194922
  • Zhang Y, Zhao Y, Liu L, et al. MicroRNA-19b promotes nasopharyngeal carcinoma more sensitive to cisplatin by suppressing KRAS. Technol Cancer Res Treat. 2018;17:153303381879365. doi:10.1177/1533033818793652
  • Zhang J-X, Qian D, Wang F-W, et al. MicroRNA-29c enhances the sensitivities of human nasopharyngeal carcinoma to cisplatin-based chemotherapy and radiotherapy. Cancer Lett. 2013;329(1):91–98. doi:10.1016/j.canlet.2012.10.03323142283
  • Li YL, Zhao YG, Chen B, Li XF. MicroRNA-132 sensitizes nasopharyngeal carcinoma cells to cisplatin through regulation of forkhead box A1 protein. Pharmazie. 2016;12:715–718. doi:10.1691/ph.2016.6764
  • Zhao M, Luo R, Kim M, Do J, Lee D, Han H. miR-3188 regulates nasopharyngeal carcinoma proliferation and chemosensitivity through a FOXO1-modulated positive feedback loop with mTOR–p-PI3K/AKT-c-JUN. Polym J. 2016;48(7):829–834. doi:10.1038/pj.2016.37
  • Zhu P, Wang Y, Du Y, et al. C8orf4 negatively regulates self-renewal of liver cancer stem cells via suppression of NOTCH2 signalling. Nat Commun. 2015;6(1):7122. doi:10.1038/ncomms812225985737
  • Lei Z-J, Wang J, Xiao H-L, et al. Lysine-specific demethylase 1 promotes the stemness and chemoresistance of Lgr5+ liver cancer initiating cells by suppressing negative regulators of β-catenin signaling. Oncogene. 2015;34(24):3188–3198. doi:10.1038/onc.2015.12925893304
  • Koo BS, Lee SH, Kim JM, et al. Oct4 is a critical regulator of stemness in head and neck squamous carcinoma cells. Oncogene. 2015;34(18):2317–2324. doi:10.1038/onc.2014.17424954502
  • Wang L, Tian W-D, Xu X, et al. Epstein-Barr virus nuclear antigen 1 (EBNA1) protein induction of epithelial-mesenchymal transition in nasopharyngeal carcinoma cells: EBNA1 Induces EMT and Metastasis. Cancer. 2014;120(3):363–372. doi:10.1002/cncr.2841824190575
  • Xia H, Cheung WKC, Sze J, et al. miR-200a regulates epithelial-mesenchymal to stem-like transition via ZEB2 and β-catenin signaling. J Biol Chem. 2010;285(47):36995–37004. doi:10.1074/jbc.M110.13374420826811
  • Radisky DC. miR-200c at the nexus of epithelial-mesenchymal transition, resistance to apoptosis, and the breast cancer stem cell phenotype. Breast Cancer Res. 2011;13(3):110, bcr2885. doi:10.1186/bcr288521682933
  • Chang C-J, Chao C-H, Xia W, et al. p53 regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol. 2011;13(3):317–323. doi:10.1038/ncb217321336307
  • Kim T, Veronese A, Pichiorri F, et al. p53 regulates epithelial–mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med. 2011;208(5):875–883. doi:10.1084/jem.2011023521518799
  • Yue S, Wang L, Zhang H, et al. miR-139-5p suppresses cancer cell migration and invasion through targeting ZEB1 and ZEB2 in GBM. Tumor Biol. 2015;36(9):6741–6749. doi:10.1007/s13277-015-3372-8
  • Zuber J, Tchernitsa OI, Hinzmann B, et al. A genome-wide survey of RAS transformation targets. Nat Genet. 2000;24(2):144–152. doi:10.1038/7279910655059
  • Hu M, Zhang Q, Tian X, Wang J, Niu Y, Li G. lncRNA CCAT1 is a biomarker for the proliferation and drug resistance of esophageal cancer via the miR‐143/PLK1/BUBR1 axis. Mol Carcinog. 2019;58(12):2207–2217. doi:10.1002/mc.2310931544294
  • Fu D, Lu C, Qu X, et al. LncRNA TTN-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the miR-134-5p/MBTD1 axis. Aging. 2019;11(19):8374–8385. doi:10.18632/aging.10232531600142
  • Zhuang J, Shen L, Yang L, et al. TGFβ1 promotes gemcitabine resistance through regulating the LncRNA-LET/NF90/miR-145 signaling axis in bladder cancer. Theranostics. 2017;7(12):3053–3067. doi:10.7150/thno.1954228839463
  • Li H, Huang J, Yu S, Lou Z. Long non-coding RNA DLEU1 up-regulates BIRC6 expression by competitively sponging miR-381-3p to promote cisplatin resistance in nasopharyngeal carcinoma. OTT. 2020;13:2037–2045. doi:10.2147/OTT.S237456
  • Lin F-J, Lin X-D, Xu L-Y, Zhu S-Q. Long noncoding RNA HOXA11-AS modulates the resistance of nasopharyngeal carcinoma cells to cisplatin via miR-454-3p/c-Met. Mol Cells. 2020;43:856.33115978
  • Ren S, Li G, Liu C, et al. Next generation deep sequencing identified a novel lncRNA n375709 associated with paclitaxel resistance in nasopharyngeal carcinoma. Oncol Rep. 2016;36(4):1861–1867. doi:10.3892/or.2016.498127498905
  • Zhu X, Liu L, Wang Y, et al. lncRNA MIAT/HMGB1 axis is involved in cisplatin resistance via regulating IL6-mediated activation of the JAK2/STAT3 pathway in nasopharyngeal carcinoma. Front Oncol. 2021;11:651693. doi:10.3389/fonc.2021.65169334094941
  • Liu F, Tai Y, Ma J. LncRNA NEAT1/let-7a-5p axis regulates the cisplatin resistance in nasopharyngeal carcinoma by targeting Rsf-1 and modulating the Ras-MAPK pathway. Cancer Biol Ther. 2018;19(6):534–542. doi:10.1080/15384047.2018.145011929565706
  • Yuan F, Lou Z, Zhou Z, Yan X. Long non‑coding RNA KCNQ1OT1 promotes nasopharyngeal carcinoma cell cisplatin resistance via the miR‑454/USP47 axis. Int J Mol Med. 2021;47(4):54. doi:10.3892/ijmm.2021.488733576460
  • Wang X, Wang C, Xu H, Xie H. Long non-coding RNA SLC25A21-AS1 promotes multidrug resistance in nasopharyngeal carcinoma by regulating miR-324-3p/IL-6 axis. CMAR. 2020;12:3949–3957. doi:10.2147/CMAR.S251820
  • Cui Z, Pu T, Zhang Y, Wang J, Zhao Y. Long non-coding RNA LINC00346 contributes to cisplatin resistance in nasopharyngeal carcinoma by repressing miR-342-5p. Open Biol. 2020;10(5):190286. doi:10.1098/rsob.19028632397872
  • Tang Y, He X. Long non-coding RNAs in nasopharyngeal carcinoma: biological functions and clinical applications. Mol Cell Biochem. 2021;476(9):3537–3550. doi:10.1007/s11010-021-04176-433999333
  • He J, Zhu S, Liang X, et al. LncRNA as a multifunctional regulator in cancer multi-drug resistance. Mol Biol Rep. 2021;48:1–15. doi:10.1007/s11033-021-06603-7
  • Wang Q, Zhang W, Hao S. LncRNA CCAT1 modulates the sensitivity of paclitaxel in nasopharynx cancers cells via miR-181a/CPEB2 axis. Cell Cycle. 2017;16(8):795–801. doi:10.1080/15384101.2017.130133428358263
  • Xia H, Hui K. Mechanism of cancer drug resistance and the involvement of noncoding RNAs. CMC. 2014;21(26):3029–3041. doi:10.2174/0929867321666140414101939
  • Wong FY, Liem N, Xie C, et al. Combination therapy with gossypol reveals synergism against gemcitabine resistance in cancer cells with high BCL-2 expression. PLoS One. 2012;7(12):e50786. doi:10.1371/journal.pone.005078623226540
  • Li L, Gu M, You B, et al. Long non-coding RNA ROR promotes proliferation, migration and chemoresistance of nasopharyngeal carcinoma. Cancer Sci. 2016;107(9):1215–1222. doi:10.1111/cas.1298927311700
  • Fan H, Shao M, Huang S, et al. MiR-593 mediates curcumin-induced radiosensitization of nasopharyngeal carcinoma cells via MDR1. Oncol Lett. 2016;11(6):3729–3734. doi:10.3892/ol.2016.443827313684
  • Kang M, Xiao J, Wang J, et al. MiR-24 enhances radiosensitivity in nasopharyngeal carcinoma by targeting SP1. Cancer Med. 2016;5(6):1163–1173. doi:10.1002/cam4.66026922862
  • Tian Y, Tian Y, Tu Y, et al. microRNA‐124 inhibits stem‐like properties and enhances radiosensitivity in nasopharyngeal carcinoma cells via direct repression of expression of JAMA. J Cell Mol Med. 2020;24(17):9533–9544. doi:10.1111/jcmm.1517732681617
  • Wang S, Pan Y, Zhang R, et al. Hsa-miR-24-3p increases nasopharyngeal carcinoma radiosensitivity by targeting both the 3′UTR and 5′UTR of Jab1/CSN5. Oncogene. 2016;35(47):6096–6108. doi:10.1038/onc.2016.14727157611
  • Zhan S, Ni B. hsa-miR-9-5p down-regulates HK2 and confers radiosensitivity to nasopharyngeal carcinoma. Technol Cancer Res Treat. 2021;20:153303382199782. doi:10.1177/1533033821997822
  • Zhu H, Zhu X, Cheng G, Zhou M, Lou W. Downregulation of microRNA-21 enhances radiosensitivity in nasopharyngeal carcinoma. Exp Ther Med. 2015;9(6):2185–2189. doi:10.3892/etm.2015.240326136957
  • Tian Y, Yan M, Zheng J, et al. miR-483-5p decreases the radiosensitivity of nasopharyngeal carcinoma cells by targeting DAPK1. Lab Invest. 2019;99(5):602–611. doi:10.1038/s41374-018-0169-630664712
  • Zhou X, Zheng J, Tang Y, et al. EBV encoded miRNA BART8-3p promotes radioresistance in nasopharyngeal carcinoma by regulating ATM/ATR signaling pathway. Biosci Rep. 2019;39(9):BSR20190415. doi:10.1042/BSR2019041531471531
  • Ma R, Gao P, Yang H, et al. Inhibition of cell proliferation and radioresistance by miR-383-5p through targeting RNA binding protein motif (RBM3) in nasopharyngeal carcinoma. Ann Transl Med. 2021;9(2):123. doi:10.21037/atm-20-688133569425
  • Wu W, Chen X, Yu S, Wang R, Zhao R, Du C. microRNA-222 promotes tumor growth and confers radioresistance in nasopharyngeal carcinoma by targeting PTEN. Mol Med Rep. 2017. doi:10.3892/mmr.2017.7931
  • Huang W, Liu J, Hu S, et al. miR-181a upregulation promotes radioresistance of nasopharyngeal carcinoma by targeting RKIP. OTT. 2019;12:10873–10884. doi:10.2147/OTT.S228800
  • Qu J-Q, Yi H-M, Ye X, et al. MiRNA-203 reduces nasopharyngeal carcinoma radioresistance by targeting IL8/AKT signaling. Mol Cancer Ther. 2015;14(11):2653–2664. doi:10.1158/1535-7163.MCT-15-046126304234
  • Wang Z, Mao J-W, Liu G-Y, et al. MicroRNA-372 enhances radiosensitivity while inhibiting cell invasion and metastasis in nasopharyngeal carcinoma through activating the PBK-dependent p53 signaling pathway. Cancer Med. 2019;8(2):712–728. doi:10.1002/cam4.192430656832
  • Qu J-Q, Yi H-M, Ye X, et al. MiR-23a sensitizes nasopharyngeal carcinoma to irradiation by targeting IL-8/Stat3 pathway. Oncotarget. 2015;6(29):28341–28356. doi:10.18632/oncotarget.511726314966
  • Han Q, Li L, Liang H, Li Y, Xie J, Wang Z. Downregulation of lncRNA X inactive specific transcript (XIST) suppresses cell proliferation and enhances radiosensitivity by upregulating mir-29c in nasopharyngeal carcinoma cells. Med Sci Monitor. 2017;23:4798.
  • Yi L, Ouyang L, Wang S, Li S, Yang X. Long noncoding RNA PTPRG‐AS1 acts as a microRNA‐194‐3p sponge to regulate radiosensitivity and metastasis of nasopharyngeal carcinoma cells via PRC1. J Cell Physiol. 2019;234(10):19088–19102. doi:10.1002/jcp.2854730993702
  • Jin C, Yan B, Lu Q, Lin Y, Ma L. The role of MALAT1/miR-1/slug axis on radioresistance in nasopharyngeal carcinoma. Tumor Biol. 2016;37(3):4025–4033. doi:10.1007/s13277-015-4227-z
  • Bissey P-A, Teng M, Law JH, et al. MiR-34c downregulation leads to SOX4 overexpression and cisplatin resistance in nasopharyngeal carcinoma. BMC Cancer. 2020;20(1):597. doi:10.1186/s12885-020-07081-z32586280
  • Luo X, He X, Liu X, Zhong L, Hu W. miR-96-5p suppresses the progression of nasopharyngeal carcinoma by targeting CDK1. OTT. 2020;13:7467–7477. doi:10.2147/OTT.S248338
  • Wang G, Wang S, Li C. MiR-183 overexpression inhibits tumorigenesis and enhances DDP-induced cytotoxicity by targeting MTA1 in nasopharyngeal carcinoma. Tumour Biol. 2017;39(6):101042831770382. doi:10.1177/1010428317703825
  • Peng X, Cao P, He D, et al. MiR-634 sensitizes nasopharyngeal carcinoma cells to paclitaxel and inhibits cell growth both in vitro and in vivo. Int J Clin Exp Pathol. 2014;7(10):678425400759
  • Peng X, Cao P, Li J, et al. MiR-1204 sensitizes nasopharyngeal carcinoma cells to paclitaxel both in vitro and in vivo. Cancer Biol Ther. 2015;16(2):261–267. doi:10.1080/15384047.2014.100128725756509
  • Zhao Y, Wang P, Wu Q. miR-1278 sensitizes nasopharyngeal carcinoma cells to cisplatin and suppresses autophagy via targeting ATG2B. Mol Cell Probes. 2020;53:101597. doi:10.1016/j.mcp.2020.10159732407879
  • Huang L, Hu C, Chao H, et al. miR-29c regulates resistance to paclitaxel in nasopharyngeal cancer by targeting ITGB1. Exp Cell Res. 2019;378(1):1–10. doi:10.1016/j.yexcr.2019.02.01230779921
  • Gao J, Shao Z, Yan M, Fu T, Zhang L, Yan Y. Targeted regulationof STAT3 by miR-29a in mediating Taxol resistance of nasopharyngeal carcinoma cell line CNE-1. CBM. 2018;22(4):641–648. doi:10.3233/CBM-170964
  • Zhao M, Luo R, Liu Y, et al. Author Correction: miR-3188 regulates nasopharyngeal carcinoma proliferation and chemosensitivity through a FOXO1-modulated positive feedback loop with mTOR–p-PI3K/AKT-c-JUN. Nat Commun. 2021;12(1):2997. doi:10.1038/s41467-021-22959-733990567
  • Zheng Z-Q, Li Z-X, Guan J-L, et al. Long noncoding RNA TINCR-mediated regulation of acetyl-CoA metabolism promotes nasopharyngeal carcinoma progression and chemoresistance. Cancer Res. 2020;80(23):5174–5188. doi:10.1158/0008-5472.CAN-19-362633067266