1,518
Views
9
CrossRef citations to date
0
Altmetric
Review

Technological Advancements in External Beam Radiation Therapy (EBRT): An Indispensable Tool for Cancer Treatment

, , &
Pages 1421-1429 | Published online: 11 Apr 2022

References

  • Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and Radiation Therapy: current Advances and Future Directions. Int J Med Sci. 2012;9(3):193–199. doi:10.7150/ijms.3635
  • Orth M, Lauber K, Niyazi M, et al. Current concepts in clinical radiation oncology. Radiat Environ Biophys. 2014;53(1):1–29. doi:10.1007/s00411-013-0497-2
  • Barnett GC, West CML, Dunning AM, et al. Normal tissue reactions to radiotherapy. Nat Rev Cancer. 2009;9(2):134–142. doi:10.1038/nrc2587
  • Prasanna PGS, Stone HB, Wong RS, et al. Normal tissue protection for improving radiotherapy: where are the Gaps? Transl Cancer Res. 2012;1(1). doi:10.21037/372
  • Lee TF, Yang J, Huang EY, Lee CC, Chan MF, Liu A. Technical Advancement of Radiation Therapy. Biomed Res Int. 2014;2014:e797412. doi:10.1155/2014/797412
  • Garibaldi C, Jereczek-Fossa BA, Marvaso G, et al. Recent advances in radiation oncology. Ecancermedicalscience. 2017;11:785. doi:10.3332/ecancer.2017.785
  • Tseng M, Ho F, Leong YH, et al. Emerging radiotherapy technologies and trends in nasopharyngeal cancer. Cancer Commun. 2020;40(9):395–405. doi:10.1002/cac2.12082
  • Shirato H, Le QT, Kobashi K, et al. Selection of external beam radiotherapy approaches for precise and accurate cancer treatment. J Radiat Res. 2018;59(Suppl 1):i2–i10. doi:10.1093/jrr/rrx092
  • Tam S, Amit M, Boonsripitayanon M, et al. Adjuvant External Beam Radiotherapy in Locally Advanced Differentiated Thyroid Cancer. JAMA Otolaryngol Head Neck Surg. 2017;143(12):1244–1251. doi:10.1001/jamaoto.2017.2077
  • Mladenov E, Magin S, Soni A, Iliakis G, Double-Strand Break DNA. Repair as Determinant of Cellular Radiosensitivity to Killing and Target in Radiation Therapy. Front Oncol. 2013;3:113. doi:10.3389/fonc.2013.00113
  • Suman S, Kumar S, Moon BH, et al. Relative Biological Effectiveness of Energetic Heavy Ions for Intestinal Tumorigenesis Shows Male Preponderance and Radiation Type and Energy Dependence in APC1638N/+ Mice. Int J Radiation Oncol. 2016;95(1):131–138. doi:10.1016/j.ijrobp.2015.10.057
  • Vignard J, Mirey G, Salles B. Ionizing-radiation induced DNA double-strand breaks: a direct and indirect lighting up. Radiotherapy Oncol. 2013;108(3):362–369. doi:10.1016/j.radonc.2013.06.013
  • Department of Radiation Oncology, University of Health Sciences, Okmeydani Training and Research Hospital, Istanbul, Turkey, Kandemir Gursel O. Recent Technological Advances in Radiotherapy. Eur Arch Med Res. 2018;34(Suppl1):55–60. doi:10.5152/eamr.2018.69775.
  • Chen JLY, Huang YS, Kuo SH, et al. Intensity-modulated radiation therapy achieves better local control compared to three-dimensional conformal radiation therapy for T4-stage nasopharyngeal carcinoma. Oncotarget. 2016;8(8):14068–14077. doi:10.18632/oncotarget.12736
  • Onal C, Yuce Sari S, Yavas G, et al. Outcome and safety analysis of endometrial cancer patients treated with postoperative 3D-conformal radiotherapy or intensity modulated radiotherapy. Acta Oncol. 2021:1–7. doi:10.1080/0284186X.2021.1926537.
  • Taylor A, Powell MEB. Intensity-modulated radiotherapy—what is it? Cancer Imaging. 2004;4(2):68–73. doi:10.1102/1470-7330.2004.0003
  • Jones BM, Green S. Modern radiation techniques in early stage breast cancer for the breast radiologist. Clin Imaging. 2021;80:19–25. doi:10.1016/j.clinimag.2021.06.035
  • Guillemin F, Berger L, Lapeyre M, Bellière-Calandry A. [Dosimetric and toxicity comparison of IMRT and 3D-CRT of non-small cell lung cancer]. Cancer Radiother. 2021. doi:10.1016/j.canrad.2021.03.001
  • Mansouri K, Rastegari-Pouyani M, Ghanbri-Movahed M, Safarzadeh M, Kiani S, Ghanbari-Movahed Z. Can a metabolism-targeted therapeutic intervention successfully subjugate SARS-COV-2? A scientific rational. Biomed Pharmacother. 2020;131:110694. doi:10.1016/j.biopha.2020.110694
  • Cheung K. Intensity modulated radiotherapy: advantages, limitations and future developments. Biomed Imaging Interv J. 2006;2(1):e19. doi:10.2349/biij.2.1.e19
  • Shen J, Yang D, Chen M, et al. Hypofractionated Volumetric-Modulated Arc Radiotherapy for Patients With Non-Small-Cell Lung Cancer Not Suitable for Surgery or Conventional Chemoradiotherapy or SBRT. Front Oncol. 2021;11:644852. doi:10.3389/fonc.2021.644852
  • Teoh M, Clark CH, Wood K, Whitaker S, Nisbet A. Volumetric modulated arc therapy: a review of current literature and clinical use in practice. Br J Radiol. 2011;84(1007):967–996. doi:10.1259/bjr/22373346
  • Gupta T, Narayan CA. Image-guided radiation therapy: physician’s perspectives. J Med Phys. 2012;37(4):174–182. doi:10.4103/0971-6203.103602
  • Chang BK, Timmerman RD. Stereotactic body radiation therapy: a comprehensive review. Am J Clin Oncol. 2007;30(6):637–644. doi:10.1097/COC.0b013e3180ca7cb1
  • Alongi F, Arcangeli S, Filippi AR, Ricardi U, Scorsetti M. Review and uses of stereotactic body radiation therapy for oligometastases. Oncologist. 2012;17(8):1100–1107. doi:10.1634/theoncologist.2012-0092
  • Ge X, Zhu H, Dai W, Sun X. Stereotactic body radiotherapy in the era of radiotherapy with immunotherapy. J Thorac Dis. 2016;8(11):2968–2970. doi:10.21037/jtd.2016.11.16
  • McDonald AM, Dobelbower MC, Yang ES, et al. Prostate Stereotactic Body Radiation Therapy With a Focal Simultaneous Integrated Boost: acute Toxicity and Dosimetry Results From a Prospective Trial. Adv Radiat Oncol. 2018;4(1):90–95. doi:10.1016/j.adro.2018.09.007
  • Kim YJ, Yoon KJ, Kim YS. Simultaneous integrated boost with stereotactic radiotherapy for dominant intraprostatic lesion of localized prostate cancer: a dosimetric planning study. Sci Rep. 2020;10(1):14713. doi:10.1038/s41598-020-71715-2
  • Chua GWY, Chua KLM. Which patients benefit most from stereotactic body radiotherapy or surgery in medically operable non‐small cell lung cancer? An in‐depth look at patient characteristics on both sides of the debate. Thoracic Cancer. 2019;10(10):1857. doi:10.1111/1759-7714.13160
  • Musielak M, Suchorska WM, Fundowicz M, Milecki P, Malicki J. Future Perspectives of Proton Therapy in Minimizing the Toxicity of Breast Cancer Radiotherapy. J Pers Med. 2021;11(5):410. doi:10.3390/jpm11050410
  • Flatten V, Baumann KS, Weber U, Engenhart-Cabillic R, Zink K. Quantification of the dependencies of the Bragg peak degradation due to lung tissue in proton therapy on a CT-based lung tumor phantom. Phys Med Biol. 2019;64(15):155005. doi:10.1088/1361-6560/ab2611
  • Athar BS, Bednarz B, Seco J, Hancox C, Paganetti H. Comparison of out-of-field photon doses in 6 MV IMRT and neutron doses in proton therapy for adult and pediatric patients. Phys Med Biol. 2010;55(10):2879–2891. doi:10.1088/0031-9155/55/10/006
  • Demizu Y, Mizumoto M, Onoe T, et al. Proton beam therapy for bone sarcomas of the skull base and spine: a retrospective nationwide multicenter study in Japan. Cancer Sci. 2017;108(5):972–977. doi:10.1111/cas.13192
  • Jiang GL. Particle therapy for cancers: a new weapon in radiation therapy. Front Med. 2012;6(2):165–172. doi:10.1007/s11684-012-0196-4
  • Kinashi Y, Yokomizo N, Takahashi S, Double-strand Breaks DNA. Induced byFractionated Neutron Beam Irradiation for Boron Neutron Capture Therapy. Anticancer Res. 2017;37(4):1681–1685. doi:10.21873/anticanres.11499
  • Malouff TD, Mahajan A, Krishnan S, Beltran C, Seneviratne DS, Trifiletti DM. Carbon Ion Therapy: a Modern Review of an Emerging Technology. Front Oncol. 2020;1:10.
  • Farr JB, Flanz JB, Gerbershagen A, Moyers MF. New horizons in particle therapy systems. Med Phys. 2018;45(11):e953–e983. doi:10.1002/mp.13193
  • Dell’Oro M, Short M, Wilson P, Bezak E. Clinical Limitations of Photon, Proton and Carbon Ion Therapy for Pancreatic Cancer. Cancers. 2020;12(1):163. doi:10.3390/cancers12010163
  • Mang TS. Lasers and light sources for PDT: past, present and future. Photodiagnosis Photodyn Ther. 2004;1(1):43–48. doi:10.1016/S1572-1000(04)00012-2
  • Wilson BC. Photodynamic therapy for cancer: principles. Can J Gastroenterol. 2002;16(6):393–396. doi:10.1155/2002/743109
  • Ormond AB, Freeman HS. Dye Sensitizers for Photodynamic Therapy. Materials. 2013;6(3):817–840. doi:10.3390/ma6030817
  • Marcus KJ, Haas-Kogan D. 8 - Pediatric Radiation Oncology. In: Orkin SH, Fisher DE, Look AT, Lux SE, Ginsburg D, Nathan DG, editors. Oncology of Infancy and Childhood. 2009:241–255. doi:10.1016/B978-1-4160-3431-5.00008-X
  • Capella MAM, Capella LS. A light in multidrug resistance: photodynamic treatment of multidrug-resistant tumors. J Biomed Sci. 2003;10(4):361–366. doi:10.1007/BF02256427
  • Gupta S, Dwarakanath BS, Chaudhury NK, Mishra AK, Muralidhar K, Jain V. In vitro and in vivo targeted delivery of photosensitizers to the tumor cells for enhanced photodynamic effects. J Cancer Res Ther. 2011;7(3):314–324. doi:10.4103/0973-1482.87035
  • Papineni RV, Krishnan S, Pulickel A, Sahin O. Abstract 3057: development of radiation-triggered phosphor platform for localized activation in combinatory cancer treatment. Cancer Res. 2021;81(13 Supplement):3057.
  • NIH/NCI 399 - Combinatory Treatment Utilizing Radiation to Locally Activate Systemically Delivered Therapeutics | NCI: SBIR & STTR. Available from: https://sbir.cancer.gov/funding/contracts/399. Accessed July 9, 2021.
  • Deng W, Chen W, Clement S, et al. Controlled gene and drug release from a liposomal delivery platform triggered by X-ray radiation. Nat Commun. 2018;9(1):2713. doi:10.1038/s41467-018-05118-3
  • Ma N, Xu H, An L, Li J, Sun Z, Zhang X. Radiation-sensitive diselenide block co-polymer micellar aggregates: toward the combination of radiotherapy and chemotherapy. Langmuir. 2011;27(10):5874–5878. doi:10.1021/la2009682
  • Liu H, Laan AC, Plomp J, et al. Ionizing Radiation-Induced Release from Poly(ε-caprolactone-b-ethylene glycol) Micelles. ACS Appl Polym Mater. 2021;3(2):968–975. doi:10.1021/acsapm.0c01258
  • Papineni R, Adhikary A. Abstract 482: multiple chemical action cancer therapeutics. Cancer Res. 2020;80(16 Supplement):482.
  • Verma A, Adhikary A, Woloschak G, Dwarakanath BS, Papineni RVL. A combinatorial approach of a polypharmacological adjuvant 2-deoxy-D-glucose with low dose radiation therapy to quell the cytokine storm in COVID-19 management. Int J Radiat Biol. 2020;96(11):1323–1328. doi:10.1080/09553002.2020.1818865
  • Papineni RV, Adhikary A, Tandon R, Mitra D. Abstract 713: inhibition of pseudo SARS-CoV-2 binding activity of a anti-cancer polypharmacological agent analogs. Cancer Res. 2021;81(13Supplement):713. doi:10.1158/1538-7445.AM2021-713
  • Glide-Hurst CK, Lee P, Yock AD, et al. Adaptive Radiation Therapy (ART) Strategies and Technical Considerations: a State of the ART Review From NRG Oncology. Int J Radiat Oncol Biol Phys. 2021;109(4):1054–1075. doi:10.1016/j.ijrobp.2020.10.021
  • van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B. Radiomics in medical imaging—“how-to” guide and critical reflection. Insights Imaging. 2020;11(1):91. doi:10.1186/s13244-020-00887-2
  • Wilson JD, Hammond EM, Higgins GS, Petersson K. Ultra-High Dose Rate (FLASH) Radiotherapy: Silver Bullet or Fool’s Gold?. Front Oncol. 2020;9:1563. doi:10.3389/fonc.2019.01563