63
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

In situ Detecting Lipids as Potential Biomarkers for the Diagnosis and Prognosis of Intrahepatic Cholangiocarcinoma

ORCID Icon, ORCID Icon, , , , , , , , , ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 2903-2912 | Received 20 Jan 2022, Accepted 20 Aug 2022, Published online: 27 Nov 2023

References

  • Poultsides GA, Zhu AX, Choti MA, et al. Intrahepatic cholangiocarcinoma. J Am Coll Surg. 2010;90:817–837.
  • Mavros MN, Economopoulos KP, Alexiou VG, et al. Treatment and prognosis for patients with intrahepatic cholangiocarcinoma: systematic review and meta-analysis. JAMA Surg. 2014;149:565. doi:10.1001/jamasurg.2013.5137
  • Mosadeghi S, Liu B, Bhuket T, et al. Sex-specific and race/ethnicity-specific disparities in cholangiocarcinoma incidence and prevalence in the U.S.: an updated analysis of the 2000–2011 surveillance, epidemiology, and end results registry. Hepatol Res. 2016;46:669–677. doi:10.1111/hepr.12605
  • Saha SK, Zhu AX, Fuchs CS, et al. Forty-year trends in cholangiocarcinoma incidence in the U.S.: intrahepatic disease on the rise. Oncologist. 2016;21:594–599. doi:10.1634/theoncologist.2015-0446
  • Banales JM, Cardinale V, Carpino G, et al. Expert consensus document: cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol. 2016;13:261.
  • Rizzo A, Frega G, Ricci AD, et al. Anti-EGFR monoclonal antibodies in advanced biliary tract cancer: a systematic review and meta-analysis. Vivo. 2020;34:479–488. doi:10.21873/invivo.11798
  • Massa A, Varamo C, Vita F, et al. Evolution of the experimental models of cholangiocarcinoma. Cancers. 2020;12:2308. doi:10.3390/cancers12082308
  • Rizzo A, Ricci AD, Brandi G. Pemigatinib: hot topics behind the first approval of a targeted therapy in cholangiocarcinoma. Cancer Treat Res Commun. 2021;27:100337. doi:10.1016/j.ctarc.2021.100337
  • Arentz G, Mittal P, Zhang C, et al. Applications of mass spectrometry imaging to cancer. Adv Cancer Res. 2017;134:27–66.
  • Cho WC. Mass spectrometry-based proteomics in cancer research. Expert Rev Proteomics. 2017;14:725–727. doi:10.1080/14789450.2017.1365604
  • Budhu A, Roessler S, Zhao X, et al. Integrated metabolite and gene expression profiles identify lipid biomarkers associated with progression of hepatocellular carcinoma and patient outcomes. Gastroenterology. 2013;144:1066–1075 e1. doi:10.1053/j.gastro.2013.01.054
  • Bassani-Sternberg M, Coukos G. Mass spectrometry-based antigen discovery for cancer immunotherapy. Curr Opin Immunol. 2016;41:9–17. doi:10.1016/j.coi.2016.04.005
  • Chen G, Li H, Qiu L, et al. Change of fucosylated IgG2 Fc-glycoforms in pancreatitis and pancreatic adenocarcinoma: a promising disease-classification model. Anal Bioanal Chem. 2014;406:267–273. doi:10.1007/s00216-013-7439-3
  • Balluff B, Hanselmann M, Heeren RM. Mass spectrometry imaging for the investigation of intratumor heterogeneity. Adv Cancer Res. 2017;134:201–230.
  • Han EC, Lee YS, Liao WS, et al. Direct tissue analysis by MALDI-TOF mass spectrometry in human hepatocellular carcinoma. Clin Chim Acta. 2011;412:230–239. doi:10.1016/j.cca.2010.09.021
  • Faouder JL, Gigante E, Léger T, et al. Proteomic landscape of cholangiocarcinomas reveals 3 different subgroups according to their localization and the aspect of non-tumor liver. Proteomics. 2019;13:1800128.
  • Lankisch TO, Jochen M, Negm AA, et al. Bile proteomic profiles differentiate cholangiocarcinoma from primary sclerosing cholangitis and choledocholithiasis. Gastroenterology. 2011;140:875–884. doi:10.1016/S0016-5085(11)60273-4
  • Farid SG, Craven RA, Jianhe P, et al. Shotgun proteomics of human bile in hilar cholangiocarcinoma. Proteomics. 2011;11:2134–2138. doi:10.1002/pmic.201000653
  • Reid S, Tibshirani R, Friedman J. A study of error variance estimation in lasso regression. Stat Sin. 2013;2013:35–67.
  • Dos Santos A, Court M, Thiers V, et al. Identification of cellular targets in human intrahepatic cholangiocarcinoma using laser microdissection and accurate mass and time tag proteomics. Mol Cell Proteom. 2010;9:1991–2004
  • Wang X, Dai S, Zhang Z, et al. Characterization of apolipoprotein A-I as a potential biomarker for cholangiocarcinoma. Eur J Cancer Care. 2009;18:625–635. doi:10.1111/j.1365-2354.2008.00965.x
  • Le Faouder J, Laouirem S, Alexandrov T, et al. Tumoral heterogeneity of hepatic cholangiocarcinomas revealed by MALDI imaging mass spectrometry. Proteomics. 2014;14:965–972. doi:10.1002/pmic.201300463
  • Park YS, Chong WY, Lee SC, et al. Lipid profiles for intrahepatic cholangiocarcinoma identified using matrix-assisted laser desorption/ionization mass spectrometry. Clinica Chimica Acta. 2011;412:1978–1982. doi:10.1016/j.cca.2011.07.008
  • Poli A, Billi AM, Mongiorgi S, et al. Nuclear phosphatidylinositol signaling: focus on phosphatidylinositol phosphate kinases and phospholipases C. J Cell Physiol. 2016;231:1645–1655. doi:10.1002/jcp.25273
  • Weber GF, Menko AS. Phosphatidylinositol 3-kinase is necessary for lens fiber cell differentiation and survival. Invest Ophthalmol Vis Sci. 2006;47:4490–4499. doi:10.1167/iovs.06-0401
  • Barberino RS, Santos JMS, Lins T, et al. Epigallocatechin-3-gallate (EGCG) reduces apoptosis of preantral follicles through the phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) signaling pathway after in vitro culture of sheep ovarian tissue. Theriogenology. 2020;155:25–32. doi:10.1016/j.theriogenology.2020.05.037
  • Zewe JP, Miller AM, Sangappa S, et al. Probing the subcellular distribution of phosphatidylinositol reveals a surprising lack at the plasma membrane. J Cell Biol. 2020;219. doi:10.1083/jcb.201906127
  • Kuna RS, Field SJ. GOLPH3: a Golgi phosphatidylinositol(4)phosphate effector that directs vesicle trafficking and drives cancer. J Lipid Res. 2019;60:269–275. doi:10.1194/jlr.R088328
  • Kurz M, Brachvogel V, Matter H, et al. Insights into the bile acid transportation system: the human ileal lipid-binding protein-cholyltaurine complex and its comparison with homologous structures. Proteins Struct Funct Bioinform. 2010;50:312–328. doi:10.1002/prot.10289
  • Qiu Y, Zhou B, Su M, et al. Mass spectrometry-based quantitative metabolomics revealed a distinct lipid profile in breast cancer patients. Int J Mol Sci. 2013;14:8047–8061. doi:10.3390/ijms14048047
  • Farshidfar F, Weljie AM, Kopciuk KA, et al. A validated metabolomic signature for colorectal cancer: exploration of the clinical value of metabolomics. Br J Cancer. 2016;115:848–857. doi:10.1038/bjc.2016.243
  • Lassman ME, Mcavoy T, Chappell DL, et al. The clinical utility of mass spectrometry based protein assays. Clinica Chimica Acta. 2016;459:155–161. doi:10.1016/j.cca.2016.05.027
  • Olivier F, David F, Yves-Patrice LT, et al. AJCC 7th edition of TNM staging accurately discriminates outcomes of patients with resectable intrahepatic cholangiocarcinoma: by the AFC-IHCC-2009 study group. Cancer. 2011;117:2170–2177. doi:10.1002/cncr.25712
  • Wurlitzer M, Hessling E, Rinas K, et al. Mass spectrometric lipid profiles of picosecond infrared laser-generated tissue aerosols discriminate different brain tissues. Lasers Surg Med. 2020;52:228–234. doi:10.1002/lsm.23096
  • Lapitz A, Arbelaiz A, O’Rourke CJ, et al. Patients with cholangiocarcinoma present specific RNA profiles in serum and urine extracellular vesicles mirroring the tumor expression: novel liquid biopsy biomarkers for disease diagnosis. Cells. 2020;9:721. doi:10.3390/cells9030721
  • Wolrab D, Jirásko R, Cífková E, et al. Lipidomic profiling of human serum enables detection of pancreatic cancer. Nat Commun. 2022;13:124. doi:10.1038/s41467-021-27765-9
  • Rizzo A, Ricci AD, Tavolari S, et al. Circulating tumor DNA in biliary tract cancer: current evidence and future perspectives. Cancer Genomics Proteomics. 2020;17:441–452. doi:10.21873/cgp.20203