433
Views
4
CrossRef citations to date
0
Altmetric
REVIEW

Neurofibromatosis Type 1-Associated Optic Pathway Gliomas: Current Challenges and Future Prospects

ORCID Icon & ORCID Icon
Pages 667-681 | Received 01 Mar 2023, Accepted 06 Jun 2023, Published online: 13 Jul 2023

References

  • Huson SM, Compston DA, Clark P, Harper PS. A genetic study of von Recklinghausen neurofibromatosis in south east wales. I. prevalence, fitness, mutation rate, and effect of parental transmission on severity. J Med Genet. 1989;26(11):704–711. doi:10.1136/jmg.26.11.704
  • Hattori S, Maekawa M, Nakamura S. Identification of neurofibromatosis type I gene product as an insoluble GTPase-activating protein toward ras p21. Oncogene. 1992;7(3):481–485.
  • Basu TN, Gutmann DH, Fletcher JA, Glover TW, Collins FS, Downward J. Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature. 1992;356(6371):713–715. doi:10.1038/356713a0
  • Legius E, Messiaen L, Wolkenstein P, et al. Revised diagnostic criteria for neurofibromatosis type 1 and legius syndrome: an international consensus recommendation. Genet Med. 2021;23(8):1506–1513. doi:10.1038/s41436-021-01170-5
  • Denckla MB, Hofman K, Mazzocco MM, et al. Relationship between T2-weighted hyperintensities (unidentified bright objects) and lower IQs in children with neurofibromatosis-1. Am J Med Genet. 1996;67(1):98–102. doi:10.1002/(SICI)1096-8628(19960216)67:1<98::AID-AJMG17>3.0.CO;2-K
  • Leschziner GD, Golding JF, Ferner RE. Sleep disturbance as part of the neurofibromatosis type 1 phenotype in adults. Am J Med Genet A. 2013;161A(6):1319–1322. doi:10.1002/ajmg.a.35915
  • Mbarek O, Marouillat S, Martineau J, Barthélémy C, Müh JP, Andres C. Association study of the NF1 gene and autistic disorder. Am J Med Genet. 1999;88(6):729–732. doi:10.1002/(SICI)1096-8628(19991215)88:6<729::AID-AJMG26>3.0.CO;2-Q
  • Johnson NS, Saal HM, Lovell AM, Schorry EK. Social and emotional problems in children with neurofibromatosis type 1: evidence and proposed interventions. J Pediatr. 1999;134(6):767–772. doi:10.1016/s0022-3476(99)70296-9
  • Koth CW, Cutting LE, Denckla MB. The association of neurofibromatosis type 1 and attention deficit hyperactivity disorder. Child Neuropsychol. 2000;6(3):185–194. doi:10.1076/chin.6.3.185.3155
  • Hyman SL, Shores A, North KN. The nature and frequency of cognitive deficits in children with neurofibromatosis type 1. Neurology. 2005;65(7):1037–1044. doi:10.1212/01.wnl.0000179303.72345.ce
  • Seminog OO, Goldacre MJ. Risk of benign tumours of nervous system, and of malignant neoplasms, in people with neurofibromatosis: population-based record-linkage study. Br J Cancer. 2013;108(1):193–198. doi:10.1038/bjc.2012.535
  • Uusitalo E, Rantanen M, Kallionpää RA, et al. Distinctive cancer associations in patients with neurofibromatosis type 1. J Clin Oncol. 2016;34(17):1978–1986. doi:10.1200/JCO.2015.65.3576
  • Landry JP, Schertz KL, Chiang YJ, et al. Comparison of cancer prevalence in patients with neurofibromatosis type 1 at an academic cancer center vs in the general population from 1985 to 2020. JAMA Netw Open. 2021;4(3):e210945. doi:10.1001/jamanetworkopen.2021.0945
  • Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1231–1251. doi:10.1093/neuonc/noab106
  • Listernick R, Charrow J, Greenwald MJ, Esterly NB. Optic gliomas in children with neurofibromatosis type 1. J Pediatr. 1989;114(5):788–792. doi:10.1016/s0022-3476(89)80137-4
  • Lund AM, Skovby F. Optic gliomas in children with neurofibromatosis type 1. Eur J Pediatr. 1991;150(12):835–838. doi:10.1007/BF01955002
  • Listernick R, Charrow J, Greenwald M, Mets M. Natural history of optic pathway tumors in children with neurofibromatosis type 1: a longitudinal study. J Pediatr. 1994;125(1):63–66. doi:10.1016/s0022-3476(94)70122-9
  • Czyzyk E, Jóźwiak S, Roszkowski M, Schwartz RA. Optic pathway gliomas in children with and without neurofibromatosis 1. J Child Neurol. 2003;18(7):471–478. doi:10.1177/08830738030180070401
  • Fisher MJ, Loguidice M, Gutmann DH, et al. Visual outcomes in children with neurofibromatosis type 1-associated optic pathway glioma following chemotherapy: a multicenter retrospective analysis. Neuro Oncol. 2012;14(6):790–797. doi:10.1093/neuonc/nos076
  • Mehlan J, Schüttauf F, Salamon JM, Kordes U, Friedrich RE, Mautner VF. Manifestations and treatment of adult-onset symptomatic optic pathway glioma in neurofibromatosis type 1. Anticancer Res. 2019;39(2):827–831. doi:10.21873/anticanres.13181
  • Lee AG, Dutton J. A practice pathway for the management of gliomas of the anterior visual pathway: an update and an evidence-based approach. Neuro-Ophthalmol. 1999;22:139–155. doi:10.1076/noph.22.3.139.3722
  • Ahn Y, Cho BK, Kim SK, et al. Optic pathway glioma: outcome and prognostic factors in a surgical series. Childs Nerv Syst. 2006;22(9):1136–1142. doi:10.1007/s00381-006-0086-7
  • Listernick R, Ferner RE, Liu GT, Gutmann DH. Optic pathway gliomas in neurofibromatosis-1: controversies and recommendations. Ann Neurol. 2007;61(3):189–198. doi:10.1002/ana.21107
  • Liao C, Zhang H, Liu Z, et al. The visual acuity outcome and relevant factors affecting visual improvement in pediatric sporadic chiasmatic-hypothalamic glioma patients who received surgery [published correction appears in Front Neurol. 2022 May 17;13:914268]. Front Neurol. 2020;11:766. doi:10.3389/fneur.2020.00766
  • Hill CS, Khan M, Phipps K, Green K, Hargrave D, Aquilina K. Neurosurgical experience of managing optic pathway gliomas. Childs Nerv Syst. 2021;37(6):1917–1929. doi:10.1007/s00381-021-05060-8
  • Sharif S, Ferner R, Birch JM, et al. Second primary tumors in neurofibromatosis 1 patients treated for optic glioma: substantial risks after radiotherapy. J Clin Oncol. 2006;24(16):2570–2575. doi:10.1200/JCO.2005.03.8349
  • Cappelli C, Grill J, Raquin M, et al. Long-term follow up of 69 patients treated for optic pathway tumours before the chemotherapy era. Arch Dis Child. 1998;79(4):334–338. doi:10.1136/adc.79.4.334
  • Tsang DS, Murphy ES, Merchant TE. Radiation therapy for optic pathway and hypothalamic low-grade gliomas in children. Int J Radiat Oncol Biol Phys. 2017;99(3):642–651. doi:10.1016/j.ijrobp.2017.07.023
  • Rakotonjanahary J, Gravier N, Lambron J, et al. Long-term visual acuity in patients with optic pathway glioma treated during childhood with up-front BB-SFOP chemotherapy-analysis of a French pediatric historical cohort. PLoS One. 2019;14(3):e0212107. doi:10.1371/journal.pone.0212107
  • Avery RA, Hardy KK. Vision specific quality of life in children with optic pathway gliomas. J Neurooncol. 2014;116(2):341–347. doi:10.1007/s11060-013-1300-6
  • Kotch C, Avery R, Getz KD, et al. Risk factors for treatment-refractory and relapsed optic pathway glioma in children with neurofibromatosis type 1. Neuro Oncol. 2022;24(8):1377–1386. doi:10.1093/neuonc/noac013
  • Lewis RA, Gerson LP, Axelson KA, Riccardi VM, Whitford RP. von Recklinghausen neurofibromatosis. II. incidence of optic gliomata. Ophthalmology. 1984;91(8):929–935. doi:10.1016/s0161-6420(84)34217-8
  • Listernick R, Louis DN, Packer RJ, Gutmann DH. Optic pathway gliomas in children with neurofibromatosis 1: consensus statement from the NF1 optic pathway glioma task force. Ann Neurol. 1997;41(2):143–149. doi:10.1002/ana.410410204
  • Balcer LJ, Liu GT, Heller G, et al. Visual loss in children with neurofibromatosis type 1 and optic pathway gliomas: relation to tumor location by magnetic resonance imaging. Am J Ophthalmol. 2001;131(4):442–445. doi:10.1016/s0002-9394(00)00852-7
  • King A, Listernick R, Charrow J, Piersall L, Gutmann DH. Optic pathway gliomas in neurofibromatosis type 1: the effect of presenting symptoms on outcome. Am J Med Genet A. 2003;122A(2):95–99. doi:10.1002/ajmg.a.20211
  • Listernick R, Ferner RE, Piersall L, Sharif S, Gutmann DH, Charrow J. Late-onset optic pathway tumors in children with neurofibromatosis 1. Neurology. 2004;63(10):1944–1946. doi:10.1212/01.wnl.0000144341.16830.01
  • Friedrich RE, Nuding MA. Optic pathway glioma and cerebral focal abnormal signal intensity in patients with neurofibromatosis type 1: characteristics, treatment choices and follow-up in 134 affected individuals and a brief review of the literature. Anticancer Res. 2016;36(8):4095–4121.
  • Tow SL, Chandela S, Miller NR, Avellino AM. Long-term outcome in children with gliomas of the anterior visual pathway. Pediatr Neurol. 2003;28(4):262–270. doi:10.1016/s0887-8994(02)00628-8
  • Mandiwanza T, Kaliaperumal C, Khalil A, Sattar M, Crimmins D, Caird J. Suprasellar pilocytic astrocytoma: one national centre’s experience. Childs Nerv Syst. 2014;30(7):1243–1248. doi:10.1007/s00381-014-2374-y
  • Guillamo JS, Créange A, Kalifa C, et al. Prognostic factors of CNS tumours in Neurofibromatosis 1 (NF1): a retrospective study of 104 patients. Brain. 2003;126(Pt 1):152–160. doi:10.1093/brain/awg016
  • Taylor T, Jaspan T, Milano G, et al. Radiological classification of optic pathway gliomas: experience of a modified functional classification system. Br J Radiol. 2008;81(970):761–766. doi:10.1259/bjr/65246351
  • Prada CE, Hufnagel RB, Hummel TR, et al. The use of magnetic resonance imaging screening for optic pathway gliomas in children with neurofibromatosis type 1. J Pediatr. 2015;167(4):851–856.e1. doi:10.1016/j.jpeds.2015.07.001
  • Grill J, Laithier V, Rodriguez D, Raquin MA, Pierre-Kahn A, Kalifa C. When do children with optic pathway tumours need treatment? An oncological perspective in 106 patients treated in a single centre. Eur J Pediatr. 2000;159(9):692–696. doi:10.1007/s004310000531
  • Parness-Yossifon R, Listernick R, Charrow J, Barto H, Zeid JL. Strabismus in patients with neurofibromatosis type 1-associated optic pathway glioma. J AAPOS. 2015;19(5):422–425. doi:10.1016/j.jaapos.2015.06.003
  • Sani I, Albanese A. Endocrine long-term follow-up of children with neurofibromatosis type 1 and optic pathway glioma. Horm Res Paediatr. 2017;87(3):179–188. doi:10.1159/000458525
  • Santoro C, Perrotta S, Picariello S, et al. Pretreatment endocrine disorders due to optic pathway gliomas in pediatric neurofibromatosis type 1: multicenter study. J Clin Endocrinol Metab. 2020;105(6):dgaa138. doi:10.1210/clinem/dgaa138
  • Gil Margolis M, Yackobovitz-Gavan M, Toledano H, et al. Optic pathway glioma and endocrine disorders in patients with and without NF1. Pediatr Res. 2023;93(1):233–241. doi:10.1038/s41390-022-02098-5
  • Hutter S, Piro RM, Waszak SM, et al. No correlation between NF1 mutation position and risk of optic pathway glioma in 77 unrelated NF1 patients. Hum Genet. 2016;135(5):469–475. doi:10.1007/s00439-016-1646-x
  • Melloni G, Eoli M, Cesaretti C, et al. Risk of optic pathway glioma in neurofibromatosis type 1: no evidence of genotype-phenotype correlations in a large independent cohort. Cancers. 2019;11(12):1838. doi:10.3390/cancers11121838
  • Sharif S, Upadhyaya M, Ferner R, et al. A molecular analysis of individuals with neurofibromatosis type 1 (NF1) and optic pathway gliomas (OPGs), and an assessment of genotype-phenotype correlations. J Med Genet. 2011;48(4):256–260. doi:10.1136/jmg.2010.081760
  • Bolcekova A, Nemethova M, Zatkova A, et al. Clustering of mutations in the 5’ tertile of the NF1 gene in Slovakia patients with optic pathway glioma. Neoplasma. 2013;60(6):655–665. doi:10.4149/neo_2013_084
  • Anastasaki C, Morris SM, Gao F, Gutmann DH. Children with 5’-end NF1 gene mutations are more likely to have glioma. Neurol Genet. 2017;3(5):e192. doi:10.1212/NXG.0000000000000192
  • Xu M, Xiong H, Han Y, et al. Identification of mutation regions on NF1 responsible for high- and low-risk development of optic pathway glioma in neurofibromatosis type I. Front Genet. 2018;9:270. doi:10.3389/fgene.2018.00270
  • Upadhyaya M, Huson SM, Davies M, et al. An absence of cutaneous neurofibromas associated with a 3-bp inframe deletion in exon 17 of the NF1 gene (c.2970-2972 delAAT): evidence of a clinically significant NF1 genotype-phenotype correlation. Am J Hum Genet. 2007;80(1):140–151. doi:10.1086/510781
  • Pinna V, Lanari V, Daniele P, et al. p.Arg1809Cys substitution in neurofibromin is associated with a distinctive NF1 phenotype without neurofibromas. Eur J Hum Genet. 2015;23(8):1068–1071. doi:10.1038/ejhg.2014.243
  • Santoro C, Maietta A, Giugliano T, et al. Arg(1809) substitution in neurofibromin: further evidence of a genotype-phenotype correlation in neurofibromatosis type 1. Eur J Hum Genet. 2015;23(11):1460–1461. doi:10.1038/ejhg.2015.93
  • Rojnueangnit K, Xie J, Gomes A, et al. High incidence of Noonan syndrome features including short stature and pulmonic stenosis in patients carrying NF1 missense mutations affecting p.Arg1809: genotype-phenotype correlation. Hum Mutat. 2015;36(11):1052–1063. doi:10.1002/humu.22832
  • Koczkowska M, Chen Y, Callens T, et al. Genotype-phenotype correlation in NF1: evidence for a more severe phenotype associated with missense mutations affecting NF1 codons 844–848. Am J Hum Genet. 2018;102(1):69–87. doi:10.1016/j.ajhg.2017.12.001
  • Abadin SS, Zoellner NL, Schaeffer M, Porcelli B, Gutmann DH, Johnson KJ. Racial/ethnic differences in pediatric brain tumor diagnoses in patients with neurofibromatosis type 1. J Pediatr. 2015;167(3):613–20.e202. doi:10.1016/j.jpeds.2015.04.076
  • Johnson KJ, Zoellner NL, Gutmann DH. Peri-gestational risk factors for pediatric brain tumors in neurofibromatosis type 1. Cancer Epidemiol. 2016;42:53–59. doi:10.1016/j.canep.2016.03.005
  • Porcelli B, Zoellner NL, Abadin SS, Gutmann DH, Johnson KJ. Associations between allergic conditions and pediatric brain tumors in neurofibromatosis type 1. Fam Cancer. 2016;15(2):301–308. doi:10.1007/s10689-015-9855-3
  • Thiagalingam S, Flaherty M, Billson F, North K. Neurofibromatosis type 1 and optic pathway gliomas: follow-up of 54 patients. Ophthalmology. 2004;111(3):568–577. doi:10.1016/j.ophtha.2003.06.008
  • Dodgshun AJ, Elder JE, Hansford JR, Sullivan MJ. Long-term visual outcome after chemotherapy for optic pathway glioma in children: site and age are strongly predictive. Cancer. 2015;121(23):4190–4196. doi:10.1002/cncr.29649
  • Diggs-Andrews KA, Brown JA, Gianino SM, Rubin JB, Wozniak DF, Gutmann DH. Sex is a major determinant of neuronal dysfunction in neurofibromatosis type 1. Ann Neurol. 2014;75(2):309–316. doi:10.1002/ana.24093
  • Fisher MJ, Loguidice M, Gutmann DH, et al. Gender as a disease modifier in neurofibromatosis type 1 optic pathway glioma. Ann Neurol. 2014;75(5):799–800. doi:10.1002/ana.24157
  • Hersh JH; American Academy of Pediatrics Committee on Genetics. Health supervision for children with neurofibromatosis. Pediatrics. 2008;121(3):633–642. doi:10.1542/peds.2007-3364
  • de Blank PMK, Fisher MJ, Liu GT, et al. Optic pathway gliomas in neurofibromatosis type 1: an update: surveillance, treatment indications, and biomarkers of vision. J Neuroophthalmol. 2017;37(Suppl 1):S23–S32. doi:10.1097/WNO.0000000000000550
  • Varan A, Batu A, Cila A, et al. Optic glioma in children: a retrospective analysis of 101 cases. Am J Clin Oncol. 2013;36(3):287–292. doi:10.1097/COC.0b013e3182467efa
  • Kinori M, Armarnik S, Listernick R, Charrow J, Zeid JL. Neurofibromatosis type 1-associated optic pathway glioma in children: a follow-up of 10 years or more. Am J Ophthalmol. 2021;221:91–96. doi:10.1016/j.ajo.2020.03.053
  • Bergqvist C, Servy A, Valeyrie-Allanore L, Ferkal S, Combemale P, Wolkenstein P. NF France network. neurofibromatosis 1 french national guidelines based on an extensive literature review since 1966. Orphanet J Rare Dis. 2020;15(1):37. PMID: 32014052; PMCID: PMC6998847. doi:10.1186/s13023-020-1310-3
  • Packer RJ, Iavarone A, Jones DTW, et al. Implications of new understandings of gliomas in children and adults with NF1: report of a consensus conference. Neuro Oncol. 2020;22(6):773–784. doi:10.1093/neuonc/noaa036
  • Bjur KA, Payne ET, Nemergut ME, Hu D, Flick RP. Anesthetic-related neurotoxicity and neuroimaging in children: a call for conversation. J Child Neurol. 2017;32(6):594–602. doi:10.1177/0883073817691696
  • Salerno S, Granata C, Trapenese M, et al. Is MRI imaging in pediatric age totally safe? A critical reprisal. Radiol Med. 2018;123(9):695–702. doi:10.1007/s11547-018-0896-1
  • Schmandt SM, Packer RJ, Vezina LG, Jane J. Spontaneous regression of low-grade astrocytomas in childhood. Pediatr Neurosurg. 2000;32(3):132–136. doi:10.1159/000028917
  • Parsa CF, Hoyt CS, Lesser RL, et al. Spontaneous regression of optic gliomas: thirteen cases documented by serial neuroimaging. Arch Ophthalmol. 2001;119(4):516–529. doi:10.1001/archopht.119.4.516
  • Lama G, Esposito Salsano M, Grassia C, et al. Neurofibromatosis type 1 and optic pathway glioma. A long-term follow-up. Minerva Pediatr. 2007;59(1):13–21.
  • North K, Cochineas C, Tang E, Fagan E. Optic gliomas in neurofibromatosis type 1: role of visual evoked potentials. Pediatr Neurol. 1994;10(2):117–123. doi:10.1016/0887-8994(94)90043-4
  • Falsini B, Ziccardi L, Lazzareschi I, et al. Longitudinal assessment of childhood optic gliomas: relationship between flicker visual evoked potentials and magnetic resonance imaging findings. J Neurooncol. 2008;88(1):87–96. doi:10.1007/s11060-008-9537-1
  • Kelly JP, Weiss AH. Detection of tumor progression in optic pathway glioma with and without neurofibromatosis type 1. Neuro Oncol. 2013;15(11):1560–1567. doi:10.1093/neuonc/not120
  • Bowman R, Walters B, Smith V, et al. Visual outcomes and predictors in optic pathway glioma: a single centre study [published online ahead of print, 2022 May 13]. Eye. 2022. doi:10.1038/s41433-022-02096-1
  • Avery RA, Liu GT, Fisher MJ, et al. Retinal nerve fiber layer thickness in children with optic pathway gliomas. Am J Ophthalmol. 2011;151(3):542–9.e2. doi:10.1016/j.ajo.2010.08.046
  • Gu S, Glaug N, Cnaan A, Packer RJ, Avery RA. Ganglion cell layer-inner plexiform layer thickness and vision loss in young children with optic pathway gliomas. Invest Ophthalmol Vis Sci. 2014;55(3):1402–1408. doi:10.1167/iovs.13-13119
  • Avery RA, Cnaan A, Schuman JS, et al. Longitudinal change of circumpapillary retinal nerve fiber layer thickness in children with optic pathway gliomas. Am J Ophthalmol. 2015;160(5):944–952.e1. doi:10.1016/j.ajo.2015.07.036
  • Parrozzani R, Clementi M, Kotsafti O, et al. Optical coherence tomography in the diagnosis of optic pathway gliomas. Invest Ophthalmol Vis Sci. 2013;54(13):8112–8118. doi:10.1167/iovs.13-13093
  • Barkana Y, Burgansky-Eliash Z, Gerber Y, et al. Inter-device variability of the stratus optical coherence tomography. Am J Ophthalmol. 2009;147(2):260–266. doi:10.1016/j.ajo.2008.08.008
  • Yang H, Lee HS, Bae HW, Seong GJ, Kim CY, Lee SY. Effect of image quality fluctuations on the repeatability of thickness measurements in swept-source optical coherence tomography. Sci Rep. 2020;10(1):13897. doi:10.1038/s41598-020-70852-y
  • Fisher MJ, Avery RA, Allen JC, et al. Functional outcome measures for NF1-associated optic pathway glioma clinical trials. Neurology. 2013;81(21 Suppl 1):S15–S24. doi:10.1212/01.wnl.0000435745.95155.b8
  • Astrup J. Natural history and clinical management of optic pathway glioma. Br J Neurosurg. 2003;17(4):327–335. doi:10.1080/02688690310001601216
  • Doganis D, Pourtsidis A, Tsakiris K, et al. Optic pathway glioma in children: 10 years of experience in a single institution. Pediatr Hematol Oncol. 2016;33(2):102–108. doi:10.3109/08880018.2016.1155101
  • Packer RJ, Ater J, Allen J, et al. Carboplatin and vincristine chemotherapy for children with newly diagnosed progressive low-grade gliomas. J Neurosurg. 1997;86(5):747–754. doi:10.3171/jns.1997.86.5.0747
  • Ater JL, Xia C, Mazewski CM, et al. Nonrandomized comparison of neurofibromatosis type 1 and non-neurofibromatosis type 1 children who received carboplatin and vincristine for progressive low-grade glioma: a report from the Children’s Oncology Group. Cancer. 2016;122(12):1928–1936. doi:10.1002/cncr.29987
  • Lafay-Cousin L, Holm S, Qaddoumi I, et al. Weekly vinblastine in pediatric low-grade glioma patients with carboplatin allergic reaction. Cancer. 2005;103(12):2636–2642. doi:10.1002/cncr.21091
  • Cappellano AM, Petrilli AS, da Silva NS, et al. Single agent vinorelbine in pediatric patients with progressive optic pathway glioma. J Neurooncol. 2015;121(2):405–412. doi:10.1007/s11060-014-1652-6
  • Gururangan S, Fisher MJ, Allen JC, et al. Temozolomide in children with progressive low-grade glioma. Neuro Oncol. 2007;9(2):161–168. doi:10.1215/15228517-2006-030
  • Okada K, Yamasaki K, Tanaka C, Fujisaki H, Osugi Y, Hara J. Phase I study of bevacizumab plus irinotecan in pediatric patients with recurrent/refractory solid tumors. Jpn J Clin Oncol. 2013;43(11):1073–1079. doi:10.1093/jjco/hyt124
  • Zhukova N, Rajagopal R, Lam A, et al. Use of bevacizumab as a single agent or in adjunct with traditional chemotherapy regimens in children with unresectable or progressive low-grade glioma. Cancer Med. 2019;8(1):40–50. doi:10.1002/cam4.1799
  • Green K, Panagopoulou P, D’Arco F, et al. A nationwide evaluation of bevacizumab-based treatments in paediatric low-grade glioma in the UK: safety. Efficacy, visual morbidity and outcomes [published online ahead of print, 2022 Oct 14]. Neuro Oncol. 2022:noac223. doi:10.1093/neuonc/noac223
  • Maertens O, Prenen H, Debiec-Rychter M, et al. Molecular pathogenesis of multiple gastrointestinal stromal tumors in NF1 patients. Hum Mol Genet. 2006;15(6):1015–1023. doi:10.1093/hmg/ddl016
  • Brems H, Park C, Maertens O, et al. Glomus tumors in neurofibromatosis type 1: genetic, functional, and clinical evidence of a novel association [published correction appears in Cancer Res. 2009 Oct 15;69(20):8216. Messia, Ludwine [corrected to Messiaen, Ludwine]]. Cancer Res. 2009;69(18):7393–7401. doi:10.1158/0008-5472.CAN-09-1752
  • Laycock-van Spyk S, Thomas N, Cooper DN, Upadhyaya M. Neurofibromatosis type 1-associated tumours: their somatic mutational spectrum and pathogenesis. Hum Genomics. 2011;5(6):623–690. doi:10.1186/1479-7364-5-6-623
  • Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971;68(4):820–823. doi:10.1073/pnas.68.4.820
  • Wang LH, Wu CF, Rajasekaran N, Shin YK. Loss of tumor suppressor gene function in human cancer: an overview. Cell Physiol Biochem. 2018;51(6):2647–2693. doi:10.1159/000495956
  • Kluwe L, Hagel C, Tatagiba M, et al. Loss of NF1 alleles distinguish sporadic from NF1-associated pilocytic astrocytomas. J Neuropathol Exp Neurol. 2001;60(9):917–920. doi:10.1093/jnen/60.9.917
  • Gutmann DH, James CD, Poyhonen M, et al. Molecular analysis of astrocytomas presenting after age 10 in individuals with NF1. Neurology. 2003;61(10):1397–1400. doi:10.1212/wnl.61.10.1397
  • Gutmann DH, McLellan MD, Hussain I, et al. Somatic neurofibromatosis type 1 (NF1) inactivation characterizes NF1-associated pilocytic astrocytoma. Genome Res. 2013;23(3):431–439. doi:10.1101/gr.142604.112
  • Gutmann DH, Donahoe J, Brown T, James CD, Perry A. Loss of neurofibromatosis 1 (NF1) gene expression in NF1-associated pilocytic astrocytomas. Neuropathol Appl Neurobiol. 2000;26(4):361–367. doi:10.1046/j.1365-2990.2000.00258.x
  • Sherekar M, Han SW, Ghirlando R, et al. Biochemical and structural analyses reveal that the tumor suppressor neurofibromin (NF1) forms a high-affinity dimer. J Biol Chem. 2020;295(4):1105–1119. doi:10.1074/jbc.RA119.010934
  • Young LC, Goldstein de Salazar R, Han SW, et al. Destabilizing NF1 variants act in a dominant negative manner through neurofibromin dimerization. Proc Natl Acad Sci U S A. 2023;120(5):e2208960120. doi:10.1073/pnas.2208960120
  • Bollag G, McCormick F, Clark R. Characterization of full-length neurofibromin: tubulin inhibits Ras GAP activity. EMBO J. 1993;12(5):1923–1927. doi:10.1002/j.1460-2075.1993.tb05841.x
  • Ballester R, Marchuk D, Boguski M, et al. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell. 1990;63(4):851–859. doi:10.1016/0092-8674(90)90151-4
  • Xu GF, Lin B, Tanaka K, et al. The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell. 1990;63(4):835–841. doi:10.1016/0092-8674(90)90149-9
  • Gutmann DH, Loehr A, Zhang Y, Kim J, Henkemeyer M, Cashen A. Haploinsufficiency for the neurofibromatosis 1 (NF1) tumor suppressor results in increased astrocyte proliferation. Oncogene. 1999;18(31):4450–4459. doi:10.1038/sj.onc.1202829
  • Dasgupta B, Yi Y, Chen DY, Weber JD, Gutmann DH. Proteomic analysis reveals hyperactivation of the mammalian target of rapamycin pathway in neurofibromatosis 1-associated human and mouse brain tumors. Cancer Res. 2005;65(7):2755–2760. doi:10.1158/0008-5472.CAN-04-4058
  • Johannessen CM, Reczek EE, James MF, Brems H, Legius E, Cichowski K. The NF1 tumor suppressor critically regulates TSC2 and mTOR [published correction appears in Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):16119]. Proc Natl Acad Sci U S A. 2005;102(24):8573–8578. doi:10.1073/pnas.0503224102
  • Lau N, Feldkamp MM, Roncari L, et al. Loss of neurofibromin is associated with activation of RAS/MAPK and PI3-K/AKT signaling in a neurofibromatosis 1 astrocytoma. J Neuropathol Exp Neurol. 2000;59(9):759–767. doi:10.1093/jnen/59.9.759
  • Fisher MJ, Jones DTW, Li Y, et al. Integrated molecular and clinical analysis of low-grade gliomas in children with neurofibromatosis type 1 (NF1). Acta Neuropathol. 2021;141(4):605–617. doi:10.1007/s00401-021-02276-5
  • Zhu Y, Romero MI, Ghosh P, et al. Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Genes Dev. 2001;15(7):859–876. doi:10.1101/gad.862101
  • Bajenaru ML, Hernandez MR, Perry A, et al. Optic nerve glioma in mice requires astrocyte Nf1 gene inactivation and Nf1 brain heterozygosity. Cancer Res. 2003;63(24):8573–8577.
  • Isakson SH, Rizzardi AE, Coutts AW, et al. Genetically engineered minipigs model the major clinical features of human neurofibromatosis type 1. Commun Biol. 2018;1:158. doi:10.1038/s42003-018-0163-y
  • Zhu Y, Harada T, Liu L, et al. Inactivation of NF1 in CNS causes increased glial progenitor proliferation and optic glioma formation. Development. 2005;132(24):5577–5588. doi:10.1242/dev.02162
  • Toonen JA, Ma Y, Gutmann DH. Defining the temporal course of murine neurofibromatosis-1 optic gliomagenesis reveals a therapeutic window to attenuate retinal dysfunction [published correction appears in Neuro Oncol. 2017 Jun 1;19(6):876–877]. Neuro Oncol. 2017;19(6):808–819. doi:10.1093/neuonc/now267
  • Hegedus B, Dasgupta B, Shin JE, et al. Neurofibromatosis-1 regulates neuronal and glial cell differentiation from neuroglial progenitors in vivo by both cAMP- and Ras-dependent mechanisms. Cell Stem Cell. 2007;1(4):443–457. doi:10.1016/j.stem.2007.07.008
  • Solga AC, Toonen JA, Pan Y, et al. The cell of origin dictates the temporal course of neurofibromatosis-1 (Nf1) low-grade glioma formation. Oncotarget. 2017;8(29):47206–47215. doi:10.18632/oncotarget.17589
  • Lee DY, Yeh TH, Emnett RJ, White CR, Gutmann DH. Neurofibromatosis-1 regulates neuroglial progenitor proliferation and glial differentiation in a brain region-specific manner. Genes Dev. 2010;24(20):2317–2329. doi:10.1101/gad.1957110
  • Lee DY, Gianino SM, Gutmann DH. Innate neural stem cell heterogeneity determines the patterning of glioma formation in children. Cancer Cell. 2012;22(1):131–138. doi:10.1016/j.ccr.2012.05.036
  • Ono K, Yasui Y, Rutishauser U, Miller RH. Focal ventricular origin and migration of oligodendrocyte precursors into the chick optic nerve. Neuron. 1997;19(2):283–292. doi:10.1016/s0896-6273(00)80939-3
  • Anastasaki C, Chatterjee J, Cobb O, et al. Human induced pluripotent stem cell engineering establishes a humanized mouse platform for pediatric low-grade glioma modeling. Acta Neuropathol Commun. 2022;10(1):120. doi:10.1186/s40478-022-01428-2
  • Bajenaru ML, Zhu Y, Hedrick NM, Donahoe J, Parada LF, Gutmann DH. Astrocyte-specific inactivation of the neurofibromatosis 1 gene (NF1) is insufficient for astrocytoma formation. Mol Cell Biol. 2002;22(14):5100–5113. doi:10.1128/MCB.22.14.5100-5113.2002
  • Simmons GW, Pong WW, Emnett RJ, et al. Neurofibromatosis-1 heterozygosity increases microglia in a spatially and temporally restricted pattern relevant to mouse optic glioma formation and growth. J Neuropathol Exp Neurol. 2011;70(1):51–62. doi:10.1097/NEN.0b013e3182032d37
  • Toonen JA, Anastasaki C, Smithson LJ, et al. NF1 germline mutation differentially dictates optic glioma formation and growth in neurofibromatosis-1. Hum Mol Genet. 2016;25(9):1703–1713. doi:10.1093/hmg/ddw039
  • Guo X, Pan Y, Gutmann DH. Genetic and genomic alterations differentially dictate low-grade glioma growth through cancer stem cell-specific chemokine recruitment of T cells and microglia. Neuro Oncol. 2019;21(10):1250–1262. doi:10.1093/neuonc/noz080
  • Daginakatte GC, Gutmann DH. Neurofibromatosis-1 (Nf1) heterozygous brain microglia elaborate paracrine factors that promote Nf1-deficient astrocyte and glioma growth. Hum Mol Genet. 2007;16(9):1098–1112. doi:10.1093/hmg/ddm059
  • Pong WW, Higer SB, Gianino SM, Emnett RJ, Gutmann DH. Reduced microglial CX3CR1 expression delays neurofibromatosis-1 glioma formation. Ann Neurol. 2013;73(2):303–308. doi:10.1002/ana.23813
  • Solga AC, Pong WW, Kim KY, et al. RNA sequencing of tumor-associated microglia reveals Ccl5 as a stromal chemokine critical for neurofibromatosis-1 glioma growth. Neoplasia. 2015;17(10):776–788. doi:10.1016/j.neo.2015.10.002
  • Pan Y, Xiong M, Chen R, et al. Athymic mice reveal a requirement for T-cell-microglia interactions in establishing a microenvironment supportive of Nf1 low-grade glioma growth. Genes Dev. 2018;32(7–8):491–496. doi:10.1101/gad.310797.117
  • Hegedus B, Banerjee D, Yeh TH, et al. Preclinical cancer therapy in a mouse model of neurofibromatosis-1 optic glioma. Cancer Res. 2008;68(5):1520–1528. doi:10.1158/0008-5472.CAN-07-5916
  • de Andrade Costa A, Chatterjee J, Cobb O, et al. Immune deconvolution and temporal mapping identifies stromal targets and developmental intervals for abrogating murine low-grade optic glioma formation. Neurooncol Adv. 2021;4(1):vdab194. doi:10.1093/noajnl/vdab194
  • Chatterjee J, Sanapala S, Cobb O, et al. Asthma reduces glioma formation by T cell decorin-mediated inhibition of microglia. Nat Commun. 2021;12(1):7122. doi:10.1038/s41467-021-27455-6
  • Brown JA, Gianino SM, Gutmann DH. Defective cAMP generation underlies the sensitivity of CNS neurons to neurofibromatosis-1 heterozygosity. J Neurosci. 2010;30(16):5579–5589. doi:10.1523/JNEUROSCI.3994-09.2010
  • Pan Y, Hysinger JD, Barron T, et al. NF1 mutation drives neuronal activity-dependent initiation of optic glioma. Nature. 2021;594(7862):277–282. doi:10.1038/s41586-021-03580-6
  • Anastasaki C, Mo J, Chen JK, et al. Neuronal hyperexcitability drives central and peripheral nervous system tumor progression in models of neurofibromatosis-1. Nat Commun. 2022;13(1):2785. doi:10.1038/s41467-022-30466-6
  • Anastasaki C, Woo AS, Messiaen LM, Gutmann DH. Elucidating the impact of neurofibromatosis-1 germline mutations on neurofibromin function and dopamine-based learning. Hum Mol Genet. 2015;24(12):3518–3528. doi:10.1093/hmg/ddv103
  • Anastasaki C, Wegscheid ML, Hartigan K, et al. Human iPSC-derived neurons and cerebral organoids establish differential effects of germline NF1 gene mutations. Stem Cell Rep. 2020;14(4):541–550. doi:10.1016/j.stemcr.2020.03.007
  • Morris SM, Gupta A, Kim S, Foraker RE, Gutmann DH, Payne PRO. Predictive modeling for clinical features associated with neurofibromatosis type 1. Neurol Clin Pract. 2021;11(6):497–505. doi:10.1212/CPJ.0000000000001089
  • de Blank PM, Berman JI, Liu GT, Roberts TP, Fisher MJ. Fractional anisotropy of the optic radiations is associated with visual acuity loss in optic pathway gliomas of neurofibromatosis type 1. Neuro Oncol. 2013;15(8):1088–1095. doi:10.1093/neuonc/not068
  • Yeom KW, Lober RM, Andre JB, et al. Prognostic role for diffusion-weighted imaging of pediatric optic pathway glioma. J Neurooncol. 2013;113(3):479–483. doi:10.1007/s11060-013-1140-4
  • Hales PW, Smith V, O’Hare P, et al. In vivo assessment of tumour invasion of the visual pathway in optic pathway glioma patients using multi-shell diffusion tensor MRI. Platform presentation at the 25th Annual Meeting and Exhibition of the International Society of Magnetic Resonance in Medicine; April 27; 2017; Honolulu, Hawaii.
  • de Blank P, Fisher MJ, Gittleman H, Barnholtz-Sloan JS, Badve C, Berman JI. Validation of an automated tractography method for the optic radiations as a biomarker of visual acuity in neurofibromatosis-associated optic pathway glioma. Exp Neurol. 2018;299(Pt B):308–316. doi:10.1016/j.expneurol.2017.06.004
  • Pajavand AM, Sharifi G, Anvari A, et al. Case report: chemotherapy indication in a case of neurofibromatosis type 1 presenting optic pathway glioma: a one-year clinical case study using differential tractography approach. Front Hum Neurosci. 2021;15:620439. doi:10.3389/fnhum.2021.620439
  • Avery RA, Mansoor A, Idrees R, et al. Optic pathway glioma volume predicts retinal axon degeneration in neurofibromatosis type 1. Neurology. 2016;87(23):2403–2407. doi:10.1212/WNL.0000000000003402
  • Kaul A, Toonen JA, Cimino PJ, Gianino SM, Gutmann DH. Akt- or MEK-mediated mTOR inhibition suppresses Nf1 optic glioma growth. Neuro Oncol. 2015;17(6):843–853. doi:10.1093/neuonc/nou329
  • Perreault S, Larouche V, Tabori U, et al. A Phase 2 study of trametinib for patients with pediatric glioma or plexiform neurofibroma with refractory tumor and activation of the MAPK/ERK pathway: TRAM-01. BMC Cancer. 2019;19(1):1250. doi:10.1186/s12885-019-6442-2
  • Selt F, van Tilburg CM, Bison B, et al. Response to trametinib treatment in progressive pediatric low-grade glioma patients. J Neurooncol. 2020;149(3):499–510. doi:10.1007/s11060-020-03640-3
  • Fangusaro J, Onar-Thomas A, Poussaint TY, et al. A Phase II trial of selumetinib in children with recurrent optic pathway and hypothalamic low-grade glioma without NF1: a pediatric brain tumor consortium study. Neuro Oncol. 2021;23(10):1777–1788. doi:10.1093/neuonc/noab047
  • Hanzlik E, Archambault B, El-Dairi M, et al. Use of trametinib in children and young adults with progressive low-grade glioma and glioneuronal tumors. J Pediatr Hematol Oncol. 2023;45(4):e464–e470. doi:10.1097/MPH.0000000000002598
  • Butowski N, Chang SM, Junck L, et al. A phase II clinical trial of poly-ICLC with radiation for adult patients with newly diagnosed supratentorial glioblastoma: a North American Brain Tumor Consortium (NABTC01-05). J Neurooncol. 2009;91(2):175–182. doi:10.1007/s11060-008-9693-3
  • Rosenfeld MR, Chamberlain MC, Grossman SA, et al. A multi-institution phase II study of poly-ICLC and radiotherapy with concurrent and adjuvant temozolomide in adults with newly diagnosed glioblastoma. Neuro Oncol. 2010;12(10):1071–1077. doi:10.1093/neuonc/noq071
  • Grossman SA, Ye X, Piantadosi S, et al. Survival of patients with newly diagnosed glioblastoma treated with radiation and temozolomide in research studies in the United States. Clin Cancer Res. 2010;16(8):2443–2449. doi:10.1158/1078-0432.CCR-09-3106
  • Hartman LL, Crawford JR, Makale MT, et al. Pediatric phase II trials of poly-ICLC in the management of newly diagnosed and recurrent brain tumors. J Pediatr Hematol Oncol. 2014;36(6):451–457. doi:10.1097/MPH.0000000000000047
  • Pollack IF, Jakacki RI, Butterfield LH, et al. Immune responses and outcome after vaccination with glioma-associated antigen peptides and poly-ICLC in a pilot study for pediatric recurrent low-grade gliomas. Neuro Oncol. 2016;18(8):1157–1168. doi:10.1093/neuonc/now026
  • Falsini B, Chiaretti A, Rizzo D, et al. Nerve growth factor improves visual loss in childhood optic gliomas: a randomized, double-blind, phase II clinical trial. Brain. 2016;139(Pt 2):404–414. doi:10.1093/brain/awv366
  • Boczek T, Cameron EG, Yu W, et al. Regulation of neuronal survival and axon growth by a perinuclear cAMP compartment. J Neurosci. 2019;39(28):5466–5480. doi:10.1523/JNEUROSCI.2752-18.2019
  • Zhang KY, Tuffy C, Mertz JL, et al. Role of the internal limiting membrane in structural engraftment and topographic spacing of transplanted human stem cell-derived retinal ganglion cells. Stem Cell Rep. 2021;16(1):149–167. doi:10.1016/j.stemcr.2020.12.001
  • Luo Z, Chang KC, Wu S, et al. Directly induced human retinal ganglion cells mimic fetal RGCs and are neuroprotective after transplantation in vivo. Stem Cell Rep. 2022;17(12):2690–2703. doi:10.1016/j.stemcr.2022.10.011
  • Tian F, Cheng Y, Zhou S, et al. Core transcription programs controlling injury-induced neurodegeneration of retinal ganglion cells [published correction appears in Neuron. 2023 Feb 1;111(3):444]. Neuron. 2022;110(16):2607–2624.e8. doi:10.1016/j.neuron.2022.06.003
  • Ruiz-Ederra J, García M, Hernández M, et al. The pig eye as a novel model of glaucoma. Exp Eye Res. 2005;81(5):561–569. doi:10.1016/j.exer.2005.03.014
  • van Zyl T, Yan W, McAdams A, et al. Cell atlas of aqueous humor outflow pathways in eyes of humans and four model species provides insight into glaucoma pathogenesis. Proc Natl Acad Sci U S A. 2020;117(19):10339–10349. doi:10.1073/pnas.2001250117
  • Yu M, Sun X, Tyler SR, et al. Highly efficient transgenesis in ferrets using CRISPR/Cas9-mediated homology-independent insertion at the ROSA26 locus. Sci Rep. 2019;9(1):1971. doi:10.1038/s41598-018-37192-4