265
Views
2
CrossRef citations to date
0
Altmetric
REVIEW

Current Molecular and Clinical Landscape of ATRT – The Link to Future Therapies

ORCID Icon, , ORCID Icon, , & ORCID Icon
Pages 1369-1393 | Received 12 Jul 2023, Accepted 28 Nov 2023, Published online: 06 Dec 2023

References

  • Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1231–1251. doi:10.1093/neuonc/noab106
  • Erdmann F, Kaatsch P, Grabow D, Spix C. German Childhood Cancer Registry - Annual Report 2019 (1980–2018). Mainz: Institute of Medical Biostatistics, Epidemiology and informatics (IMBEI) at the University Medical Center of the Johannes Gutenberg University; 2020.
  • Ostrom QT, Price M, Neff C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015–2019. Neuro Oncol. 2022;24(Suppl 5):v1–v95. doi:10.1093/neuonc/noac202
  • Frühwald MC, Hasselblatt M, Nemes K, et al. Age and DNA methylation subgroup as potential independent risk factors for treatment stratification in children with atypical teratoid/rhabdoid tumors. Neuro Oncol. 2020;22(7):1006–1017. doi:10.1093/neuonc/noz244
  • Oka H, Scheithauer BW. Clinicopathological characteristics of atypical teratoid/rhabdoid tumor. Neurol Med Chir. 1999;39(7):510–517; discussion 517–518. doi:10.2176/nmc.39.510
  • Benesch M, Nemes K, Neumayer P, et al. Spinal cord atypical teratoid/rhabdoid tumors in children: clinical, genetic, and outcome characteristics in a representative European cohort. Pediatr Blood Cancer. 2020;67(1):e28022. doi:10.1002/pbc.28022
  • Bartelheim K, Sumerauer D, Behrends U, et al. Clinical and genetic features of rhabdoid tumors of the heart registered with the European Rhabdoid Registry (EU-RHAB). Cancer Genet. 2014;207(9):379–383. doi:10.1016/j.cancergen.2014.04.005
  • Pohl U, Dean AF, Ichimura K, et al. Genomic analysis of chromosome 22 in synchronous and histologically distinct intracranial tumours in a child. Neuropathol Appl Neurobiol. 2010;36(4):359–363. doi:10.1111/j.1365-2990.2010.01085.x
  • Litman DA, Bhuta S, Barsky SH. Synchronous occurrence of malignant rhabdoid tumor two decades after Wilms’ tumor irradiation. Am J Surg Pathol. 1993;17(7):729–737. doi:10.1097/00000478-199307000-00011
  • Abu Arja MH, Patel P, Shah SH, et al. Synchronous central nervous system atypical teratoid/rhabdoid tumor and malignant rhabdoid tumor of the kidney: case report of a long-term survivor and review of the literature. World Neurosurg. 2018;111:6–15. doi:10.1016/j.wneu.2017.11.158
  • Frühwald MC, Biegel JA, Bourdeaut F, Roberts CW, Chi SN. Atypical teratoid/rhabdoid tumors-current concepts, advances in biology, and potential future therapies. Neuro Oncol. 2016;18(6):764–778. doi:10.1093/neuonc/nov264
  • Tekautz TM, Fuller CE, Blaney S, et al. Atypical teratoid/rhabdoid tumors (ATRT): improved survival in children 3 years of age and older with radiation therapy and high-dose alkylator-based chemotherapy. J Clin Oncol. 2005;23(7):1491–1499. doi:10.1200/JCO.2005.05.187
  • Hasselblatt M, Thomas C, Federico A, et al. Low-grade diffusely infiltrative tumour (LGDIT), SMARCB1-mutant: a clinical and histopathological distinct entity showing epigenetic similarity with ATRT-MYC. Neuropathol Appl Neurobiol. 2022;48(4):e12797. doi:10.1111/nan.12797
  • Matsumura N, Goda N, Yashige K, et al. Desmoplastic myxoid tumor, SMARCB1-mutant: a new variant of SMARCB1-deficient tumor of the central nervous system preferentially arising in the pineal region. Virchows Arch. 2021;479(4):835–839. doi:10.1007/s00428-020-02978-3
  • Thomas C, Wefers A, Bens S, et al. Desmoplastic myxoid tumor, SMARCB1-mutant: clinical, histopathological and molecular characterization of a pineal region tumor encountered in adolescents and adults. Acta Neuropathol. 2020;139(2):277–286. doi:10.1007/s00401-019-02094-w
  • Hasselblatt M, Oyen F, Gesk S, et al. Cribriform neuroepithelial tumor (CRINET): a nonrhabdoid ventricular tumor with INI1 loss and relatively favorable prognosis. J Neuropathol Exp Neurol. 2009;68(12):1249–1255. doi:10.1097/NEN.0b013e3181c06a51
  • Cai C. SWI/SNF deficient central nervous system neoplasms. Semin Diagn Pathol. 2021;38(3):167–174. doi:10.1053/j.semdp.2021.03.003
  • Thomas C, Federico A, Sill M, et al. Atypical Teratoid/Rhabdoid Tumor (AT/RT) with molecular features of pleomorphic xanthoastrocytoma. Am J Surg Pathol. 2021;45(9):1228–1234. doi:10.1097/PAS.0000000000001694
  • Hasselblatt M, Thomas C, Federico A, et al. SMARCB1-deficient and SMARCA4-deficient malignant brain tumors with complex copy number alterations and TP53 mutations may represent the first clinical manifestation of li-fraumeni syndrome. Am J Surg Pathol. 2022;46(9):1277–1283. doi:10.1097/PAS.0000000000001905
  • Nesvick CL, Lafay-Cousin L, Raghunathan A, Bouffet E, Huang AA, Daniels DJ. Atypical teratoid rhabdoid tumor: molecular insights and translation to novel therapeutics. J Neurooncol. 2020;150(1):47–56. doi:10.1007/s11060-020-03639-w
  • Bourdeaut F, Lequin D, Brugières L, et al. Frequent hSNF5/INI1 germline mutations in patients with rhabdoid tumor. Clin Cancer Res. 2011;17(1):31–38. doi:10.1158/1078-0432.CCR-10-1795
  • Eaton KW, Tooke LS, Wainwright LM, Judkins AR, Biegel JA. Spectrum of SMARCB1/INI1 mutations in familial and sporadic rhabdoid tumors. Pediatr Blood Cancer. 2011;56(1):7–15. doi:10.1002/pbc.22831
  • Hasselblatt M, Nagel I, Oyen F, et al. SMARCA4-mutated atypical teratoid/rhabdoid tumors are associated with inherited germline alterations and poor prognosis. Acta Neuropathol. 2014;128(3):453–456. doi:10.1007/s00401-014-1323-x
  • Johann PD, Erkek S, Zapatka M, et al. Atypical teratoid/rhabdoid tumors are comprised of three epigenetic subgroups with distinct enhancer landscapes. Cancer Cell. 2016;29(3):379–393. doi:10.1016/j.ccell.2016.02.001
  • Erdmann FKP, Grabow D, Spix C. German Childhood Cancer Registry Annual Report 2019 (1980–2018). Mainz: Institute of Medical Biostatistics, Epidemiology and informatics (IMBEI) at the University Medical Center of the Johannes Gutenberg University; 2020.
  • Johann PD, Hovestadt V, Thomas C, et al. Cribriform neuroepithelial tumor: molecular characterization of a SMARCB1-deficient non-rhabdoid tumor with favorable long-term outcome. Brain Pathol. 2017;27(4):411–418. doi:10.1111/bpa.12413
  • Ho B, Johann PD, Grabovska Y, et al. Molecular subgrouping of atypical teratoid/rhabdoid tumors-a reinvestigation and current consensus. Neuro Oncol. 2020;22(5):613–624. doi:10.1093/neuonc/noz235
  • Agaimy A, Foulkes WD. Hereditary SWI/SNF complex deficiency syndromes. Semin Diagn Pathol. 2018;35(3):193–198. doi:10.1053/j.semdp.2018.01.002
  • Chun HE, Johann PD, Milne K, et al. Identification and analyses of extra-cranial and cranial rhabdoid tumor molecular subgroups reveal tumors with cytotoxic T cell infiltration. Cell Rep. 2019;29(8):2338–2354 e2337. doi:10.1016/j.celrep.2019.10.013
  • Federico A, Thomas C, Miskiewicz K, et al. ATRT-SHH comprises three molecular subgroups with characteristic clinical and histopathological features and prognostic significance. Acta Neuropathol. 2022;143(6):697–711. doi:10.1007/s00401-022-02424-5
  • Lobón-Iglesias MJ, Andrianteranagna M, Han ZY, et al. Imaging and multi-omics datasets converge to define different neural progenitor origins for ATRT-SHH subgroups. Nat Commun. 2023;14(1):6669. doi:10.1038/s41467-023-42371-7
  • Upadhyaya SA, Robinson GW, Onar-Thomas A, et al. Relevance of molecular groups in children with newly diagnosed atypical teratoid rhabdoid tumor: results from prospective St. Jude multi-institutional trials. Clin Cancer Res. 2021;27(10):2879–2889. doi:10.1158/1078-0432.CCR-20-4731
  • Nemes K, Bens S, Kachanov D, et al. Clinical and genetic risk factors define two risk groups of extracranial malignant rhabdoid tumours (eMRT/RTK). Eur J Cancer. 2021;142:112–122. doi:10.1016/j.ejca.2020.10.004
  • Nemes K, Bens S, Bourdeaut F, et al. Rhabdoid tumor predisposition syndrome. In: Adam MP, Everman DB, Mirzaa GM, et al. editors. GeneReviews(®). Seattle: University of Washington, Seattle. Copyright © 1993–2023, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved; 2017.
  • Frühwald MC, Nemes K, Boztug H, et al. Current recommendations for clinical surveillance and genetic testing in rhabdoid tumor predisposition: a report from the SIOPE Host Genome Working Group. Fam Cancer. 2021;20(4):305–316. doi:10.1007/s10689-021-00229-1
  • Sredni ST, Tomita T. Rhabdoid tumor predisposition syndrome. Pediatr Dev Pathol. 2015;18(1):49–58. doi:10.2350/14-07-1531-MISC.1
  • Seeringer A, Reinhard H, Hasselblatt M, et al. Synchronous congenital malignant rhabdoid tumor of the orbit and atypical teratoid/rhabdoid tumor--feasibility and efficacy of multimodal therapy in a long-term survivor. Cancer Genet. 2014;207(9):429–433. doi:10.1016/j.cancergen.2014.06.028
  • Baker TG, Lyons MJ, Leddy L, Parham DM, Welsh CT. Epithelioid sarcoma arising in a long-term survivor of an atypical teratoid/rhabdoid tumor in a patient with rhabdoid tumor predisposition syndrome. Pediatr Dev Pathol. 2021;24(2):164–168. doi:10.1177/1093526620986492
  • Kordes U, Bartelheim K, Modena P, et al. Favorable outcome of patients affected by rhabdoid tumors due to rhabdoid tumor predisposition syndrome (RTPS). Pediatr Blood Cancer. 2014;61(5):919–921. doi:10.1002/pbc.24793
  • Fukushima H, Yamasaki K, Sakaida M, et al. Rhabdoid tumor predisposition syndrome with renal tumor 10 years after brain tumor. Pathol Int. 2021;71(2):155–160. doi:10.1111/pin.13056
  • Corinaldesi C, Holmes AB, Shen Q, et al. Tracking immunoglobulin repertoire and transcriptomic changes in germinal center B cells by single-cell analysis. Front Immunol. 2021;12:818758. doi:10.3389/fimmu.2021.818758
  • Kretzmer H, Bernhart SH, Wang W, et al. DNA methylome analysis in Burkitt and follicular lymphomas identifies differentially methylated regions linked to somatic mutation and transcriptional control. Nat Genet. 2015;47(11):1316–1325. doi:10.1038/ng.3413
  • Bennett J, Erker C, Lafay-Cousin L, et al. Canadian pediatric neuro-oncology standards of practice. Front Oncol. 2020;10:593192. doi:10.3389/fonc.2020.593192
  • Bartelheim K, Nemes K, Seeringer A, et al. Improved 6-year overall survival in AT/RT - results of the registry study Rhabdoid 2007. Cancer Med. 2016;5(8):1765–1775. doi:10.1002/cam4.741
  • Reddy AT, Strother DR, Judkins AR, et al. Efficacy of high-dose chemotherapy and three-dimensional conformal radiation for atypical teratoid/rhabdoid tumor: a report from the Children’s Oncology Group Trial ACNS0333. J Clin Oncol. 2020;38(11):1175–1185. doi:10.1200/JCO.19.01776
  • Slavc I, Chocholous M, Leiss U, et al. Atypical teratoid rhabdoid tumor: improved long-term survival with an intensive multimodal therapy and delayed radiotherapy. The Medical University of Vienna Experience 1992–2012. Cancer Med. 2014;3(1):91–100. doi:10.1002/cam4.161
  • Zaky W, Dhall G, Ji L, et al. Intensive induction chemotherapy followed by myeloablative chemotherapy with autologous hematopoietic progenitor cell rescue for young children newly-diagnosed with central nervous system atypical teratoid/rhabdoid tumors: the Head Start III experience. Pediatr Blood Cancer. 2014;61(1):95–101. doi:10.1002/pbc.24648
  • Hinkes BG, von Hoff K, Deinlein F, et al. Childhood pineoblastoma: experiences from the prospective multicenter trials HIT-SKK87, HIT-SKK92 and HIT91. J Neurooncol. 2007;81(2):217–223. doi:10.1007/s11060-006-9221-2
  • Müller K, Zwiener I, Welker H, et al. Curative treatment for central nervous system medulloepithelioma despite residual disease after resection. Report of two cases treated according to the GPHO Protocol HIT 2000 and review of the literature. Strahlenther Onkol. 2011;187(11):757–762. doi:10.1007/s00066-011-2256-0
  • Athale UH, Duckworth J, Odame I, Barr R. Childhood atypical teratoid rhabdoid tumor of the central nervous system: a meta-analysis of observational studies. J Pediatr Hematol Oncol. 2009;31(9):651–663. doi:10.1097/MPH.0b013e3181b258a9
  • Buscariollo DL, Park HS, Roberts KB, Yu JB. Survival outcomes in atypical teratoid rhabdoid tumor for patients undergoing radiotherapy in a surveillance, epidemiology, and end results analysis. Cancer. 2012;118(17):4212–4219. doi:10.1002/cncr.27373
  • von Hoff K, Hinkes B, Dannenmann-Stern E, et al. Frequency, risk-factors and survival of children with atypical teratoid rhabdoid tumors (AT/RT) of the CNS diagnosed between 1988 and 2004, and registered to the German HIT database. Pediatr Blood Cancer. 2011;57(6):978–985. doi:10.1002/pbc.23236
  • Schrey D, Carceller Lechón F, Malietzis G, et al. Multimodal therapy in children and adolescents with newly diagnosed atypical teratoid rhabdoid tumor: individual pooled data analysis and review of the literature. J Neurooncol. 2016;126(1):81–90. doi:10.1007/s11060-015-1904-0
  • Underiner RM, Eltobgy M, Stanek JR, Finlay JL, AbdelBaki MS. Meta-analysis of treatment modalities in metastatic atypical teratoid/rhabdoid tumors in children. Pediatr Neurol. 2020;108:106–112. doi:10.1016/j.pediatrneurol.2020.03.003
  • Silva AHD, Habermann S, Craven CL, et al. Atypical teratoid rhabdoid tumours (ATRTs)-A 21-year institutional experience. Childs Nerv Syst. 2023;39(6):1509–1518. doi:10.1007/s00381-023-05828-0
  • Chi SN, Zimmerman MA, Yao X, et al. Intensive multimodality treatment for children with newly diagnosed CNS atypical teratoid rhabdoid tumor. J Clin Oncol. 2009;27(3):385–389. doi:10.1200/JCO.2008.18.7724
  • Lafay-Cousin L, Hawkins C, Carret AS, et al. Central nervous system atypical teratoid rhabdoid tumours: the Canadian paediatric brain tumour consortium experience. Eur J Cancer. 2012;48(3):353–359. doi:10.1016/j.ejca.2011.09.005
  • Yamasaki K, Kiyotani C, Terashima K, et al. Clinical characteristics, treatment, and survival outcome in pediatric patients with atypical teratoid/rhabdoid tumors: a retrospective study by the Japan Children’s Cancer Group. J Neurosurg Pediatr. 2019:1–10. doi:10.3171/2019.9.PEDS19367
  • Gonzalez G, Delgado M, Blanco A, Puentes M. SIOP ABSTRACTS. Pediatr Blood Cancer. 2021;68(Suppl 5):e29349. doi:10.1002/pbc.29349
  • Fischer-Valuck BW, Chen I, Srivastava AJ, et al. Assessment of the treatment approach and survival outcomes in a modern cohort of patients with atypical teratoid rhabdoid tumors using the national cancer database. Cancer. 2017;123(4):682–687. doi:10.1002/cncr.30405
  • Dahl NA, Liu AK, Foreman NK, Widener M, Fenton LZ, Macy ME. Bevacizumab in the treatment of radiation injury for children with central nervous system tumors. Childs Nerv Syst. 2019;35(11):2043–2046.
  • Plimpton SR, Stence N, Hemenway M, Hankinson TC, Foreman N, Liu AK. Cerebral radiation necrosis in pediatric patients. Pediatr Hematol Oncol. 2015;32(1):78–83. doi:10.3109/08880018.2013.791738
  • Nanda RH, Ganju RG, Schreibmann E, et al. Correlation of acute and late brainstem toxicities with dose-volume data for pediatric patients with posterior fossa malignancies. Int J Radiat Oncol Biol Phys. 2017;98(2):360–366. doi:10.1016/j.ijrobp.2017.02.092
  • Dashti SR, Spalding A, Kadner RJ, et al. Targeted intraarterial anti-VEGF therapy for medically refractory radiation necrosis in the brain. J Neurosurg Pediatr. 2015;15(1):20–25. doi:10.3171/2014.9.PEDS14198
  • Baliga S, Gandola L, Timmermann B, et al. Brain tumors: medulloblastoma, ATRT, ependymoma. Pediatr Blood Cancer. 2021;68(Suppl 2):e28395.
  • Yang WC, Yen HJ, Liang ML, et al. Effect of early radiotherapy initiation and high-dose chemotherapy on the prognosis of pediatric atypical teratoid rhabdoid tumors in different age groups. J Neurooncol. 2020;147(3):619–631. doi:10.1007/s11060-020-03456-1
  • Squire SE, Chan MD, Marcus KJ. Atypical teratoid/rhabdoid tumor: the controversy behind radiation therapy. J Neurooncol. 2007;81(1):97–111. doi:10.1007/s11060-006-9196-z
  • Biewald E, Kiefer T, Geismar D, et al. Feasibility of proton beam therapy as a rescue therapy in heavily pre-treated retinoblastoma eyes. Cancers. 2021;13(8):1862. doi:10.3390/cancers13081862
  • McGovern SL, Okcu MF, Munsell MF, et al. Outcomes and acute toxicities of proton therapy for pediatric atypical teratoid/rhabdoid tumor of the central nervous system. Int J Radiat Oncol Biol Phys. 2014;90(5):1143–1152. doi:10.1016/j.ijrobp.2014.08.354
  • Jazmati D, Steinmeier T, Ahamd Khalil D, et al. Feasibility of proton beam therapy for infants with brain tumours: experiences from the Prospective KiProReg Registry Study. Clin Oncol. 2021;33(7):e295–e304. doi:10.1016/j.clon.2021.03.006
  • Upadhyay R, Liao K, Grosshans DR, et al. Quantifying the risk and dosimetric variables of symptomatic brainstem injury after proton beam radiation in pediatric brain tumors. Neuro Oncol. 2022;24(9):1571–1581. doi:10.1093/neuonc/noac044
  • De Amorim Bernstein K, Sethi R, Trofimov A, et al. Early clinical outcomes using proton radiation for children with central nervous system atypical teratoid rhabdoid tumors. Int J Radiat Oncol Biol Phys. 2013;86(1):114–120. doi:10.1016/j.ijrobp.2012.12.004
  • Kralik SF, Ho CY, Finke W, Buchsbaum JC, Haskins CP, Shih CS. Radiation necrosis in pediatric patients with brain tumors treated with proton radiotherapy. Am J Neuroradiol. 2015;36(8):1572–1578. doi:10.3174/ajnr.A4333
  • Seeringer A, Bartelheim K, Kerl K, et al. Feasibility of intensive multimodal therapy in infants affected by rhabdoid tumors - experience of the EU-RHAB registry. Klin Padiatr. 2014;226(3):143–148. doi:10.1055/s-0034-1368719
  • Mestnik S, Wilson S, Huang A, Sato M. Prolonged remission achieved with maintenance intraventricular chemotherapy in young patient with recurrent atypical teratoid rhabdoid tumor. Pediatr Blood Cancer. 2023;70(6):e30225. doi:10.1002/pbc.30225
  • Gottschling S, Reinhard H, Meyer S, Krenn T, Graf N, Strowitzki M. Severe encephalopathy caused by intraparenchymal methotrexate instillation due to the design of the catheter. Med Pediatr Oncol. 2003;41(5):491–492. doi:10.1002/mpo.10117
  • Packer RJ, Zimmerman RA, Rosenstock J, Rorke LB, Norris DG, Berman PH. Focal encephalopathy following methotrexate therapy. Administration via a misplaced intraventricular catheter. Arch Neurol. 1981;38(7):450–452. doi:10.1001/archneur.1981.00510070084016
  • Shapiro WR, Chernik NL, Posner JB. Necrotizing encephalopathy following intraventricular instillation of methotrexate. Arch Neurol. 1973;28(2):96–102. doi:10.1001/archneur.1973.00490200044005
  • Bachu VS, Shah P, Jimenez AE, et al. Clinical predictors of survival for patients with atypical teratoid/rhabdoid tumors. Childs Nerv Syst. 2022;38(7):1297–1306. doi:10.1007/s00381-022-05511-w
  • Nemes K, Johann PD, Steinbügl M, et al. Infants and Newborns with Atypical Teratoid Rhabdoid Tumors (ATRT) and Extracranial Malignant Rhabdoid Tumors (eMRT) in the EU-RHAB registry: a unique and challenging population. Cancers. 2022;14(9):2185. doi:10.3390/cancers14092185
  • Lafay-Cousin L, Fay-McClymont T, Johnston D, et al. Neurocognitive evaluation of long term survivors of atypical teratoid rhabdoid tumors (ATRT): the Canadian registry experience. Pediatr Blood Cancer. 2015;62(7):1265–1269. doi:10.1002/pbc.25441
  • van Tilburg CM, Pfaff E, Pajtler KW, et al. The pediatric precision oncology INFORM registry: clinical outcome and benefit for patients with very high-evidence targets. Cancer Discov. 2021;11(11):2764–2779. doi:10.1158/2159-8290.CD-21-0094
  • Berlanga P, Pierron G, Lacroix L, et al. The European MAPPYACTS trial: precision medicine program in pediatric and adolescent patients with recurrent malignancies. Cancer Discov. 2022;12(5):1266–1281. doi:10.1158/2159-8290.CD-21-1136
  • Kazansky Y, Cameron D, Demarest P, et al. Overcoming clinical resistance to EZH2 inhibition using rational epigenetic combination therapy. bioRxiv. 2023. doi:10.1101/2023.02.06.527192
  • Steinbügl M, Nemes K, Johann P, et al. Clinical evidence for a biological effect of epigenetically active decitabine in relapsed or progressive rhabdoid tumors. Pediatr Blood Cancer. 2021;68(12):e29267. doi:10.1002/pbc.29267
  • Matthews HK, Bertoli C, de Bruin RAM. Cell cycle control in cancer. Nat Rev Mol Cell Biol. 2022;23(1):74–88. doi:10.1038/s41580-021-00404-3
  • Roulois D, Loo Yau H, Singhania R, et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell. 2015;162(5):961–973. doi:10.1016/j.cell.2015.07.056
  • Janin M, Esteller M. Epigenetic awakening of viral mimicry in cancer. Cancer Discov. 2020;10(9):1258–1260. doi:10.1158/2159-8290.CD-20-0947
  • Deblois G, Tonekaboni SAM, Grillo G, et al. Epigenetic switch-induced viral mimicry evasion in chemotherapy-resistant breast cancer. Cancer Discov. 2020;10(9):1312–1329. doi:10.1158/2159-8290.CD-19-1493
  • Patel AA, Cahill K, Saygin C, Odenike O. Cedazuridine/decitabine: from preclinical to clinical development in myeloid malignancies. Blood Adv. 2021;5(8):2264–2271. doi:10.1182/bloodadvances.2020002929
  • Kakkar A, Biswas A, Goyal N, et al. The expression of Cyclin D1, VEGF, EZH2, and H3K27me3 in atypical teratoid/rhabdoid tumors of the CNS: a possible role in targeted therapy. Appl Immunohistochem Mol Morphol. 2016;24(10):729–737. doi:10.1097/PAI.0000000000000247
  • Alimova I, Birks DK, Harris PS, et al. Inhibition of EZH2 suppresses self-renewal and induces radiation sensitivity in atypical rhabdoid teratoid tumor cells. Neuro Oncol. 2013;15(2):149–160. doi:10.1093/neuonc/nos285
  • Knutson SK, Warholic NM, Wigle TJ, et al. Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. Proc Natl Acad Sci U S A. 2013;110(19):7922–7927. doi:10.1073/pnas.1303800110
  • Prorok P, Forouzanfar F, Murugarren N, et al. Loss of Ezh2 function remodels the DNA replication initiation landscape. Cell Rep. 2023;42(4):112280. doi:10.1016/j.celrep.2023.112280
  • Straining R, Eighmy WT. Tazemetostat: EZH2 inhibitor. J Adv Pract Oncol. 2022;13(2):158–163. doi:10.6004/jadpro.2022.13.2.7
  • Chi SN, Bourdeaut F, Laetsch TW, et al. Phase I study of tazemetostat, an enhancer of zeste homolog-2 inhibitor, in pediatric pts with relapsed/refractory integrase interactor 1-negative tumors. J Clin Oncol. 2020;38(15_suppl):10525. doi:10.1200/JCO.2020.38.15_suppl.10525
  • Chi SN, Bourdeaut F, Casanova M, et al. Update on Phase 1 study of tazemetostat, an enhancer of zeste homolog 2 inhibitor, in pediatric patients with relapsed or refractory integrase interactor 1–negative tumors. J Clin Oncol. 2022;40(16_suppl):10040. doi:10.1200/JCO.2022.40.16_suppl.10040
  • Gounder M, Schoffski P, Jones RL, et al. Tazemetostat in advanced epithelioid sarcoma with loss of INI1/SMARCB1: an international, open-label, Phase 2 basket study. Lancet Oncol. 2020;21(11):1423–1432. doi:10.1016/S1470-2045(20)30451-4
  • Chi SN, Yi JS, Williams PM, et al. Tazemetostat for tumors harboring SMARCB1/SMARCA4 or EZH2 alterations: results from NCI-COG pediatric MATCH APEC1621C. J Natl Cancer Inst. 2023;115(11):1355–1363. doi:10.1093/jnci/djad085
  • Gibaja V, Shen F, Harari J, et al. Development of secondary mutations in wild-type and mutant EZH2 alleles cooperates to confer resistance to EZH2 inhibitors. Oncogene. 2016;35(5):558–566. doi:10.1038/onc.2015.114
  • Shinohara H, Sawado R, Nakagawa M, et al. Dual targeting of EZH1 and EZH2 for the treatment of malignant rhabdoid tumors. Mol Ther Oncolytics. 2022;27:14–25. doi:10.1016/j.omto.2022.09.006
  • Qi L, Lindsay H, Kogiso M, et al. Evaluation of an EZH2 inhibitor in patient-derived orthotopic xenograft models of pediatric brain tumors alone and in combination with chemo- and radiation therapies. Lab Invest. 2022;102(2):185–193. doi:10.1038/s41374-021-00700-8
  • Wood P, Desai J, Waldeck K, et al. ATRT-17. A phase II study of continuous low dose panobinostat in paediatric patients with malignant rhabdoid tumours and atypical teratoid rhabdoid tumours. Neuro-Oncology. 2022;24(Supplement_1):i6–i7. doi:10.1093/neuonc/noac079.016
  • Liewer S, Huddleston A. Alisertib: a review of pharmacokinetics, efficacy and toxicity in patients with hematologic malignancies and solid tumors. Expert Opin Investig Drugs. 2018;27(1):105–112. doi:10.1080/13543784.2018.1417382
  • Upadhyaya SA, Campagne O, Billups CA, et al. Phase II study of alisertib as a single agent for treating recurrent or progressive atypical teratoid/rhabdoid tumor. Neuro Oncol. 2023;25(2):386–397. doi:10.1093/neuonc/noac151
  • Howden K, McDonald PJ, Kazina C, et al. Sustained and durable response with Alisertib monotherapy in the treatment of relapsed Atypical Teratoid Rhabdoid Tumor (ATRT). Neurooncol Adv. 2022;4(1):vdac090. doi:10.1093/noajnl/vdac090
  • Aplenc R, Blaney SM, Strauss LC, et al. Pediatric phase I trial and pharmacokinetic study of dasatinib: a report from the children’s oncology group phase I consortium. J Clin Oncol. 2011;29(7):839–844. doi:10.1200/JCO.2010.30.7231
  • Patel YT, Davis A, Baker SJ, Campagne O, Stewart CF. CNS penetration of the CDK4/6 inhibitor ribociclib in non-tumor bearing mice and mice bearing pediatric brain tumors. Cancer Chemother Pharmacol. 2019;84(2):447–452. doi:10.1007/s00280-019-03864-9
  • Geoerger B, Bourdeaut F, DuBois SG, et al. A Phase I Study of the CDK4/6 Inhibitor Ribociclib (LEE011) in pediatric patients with malignant rhabdoid tumors, neuroblastoma, and other solid tumors. Clin Cancer Res. 2017;23(10):2433–2441. doi:10.1158/1078-0432.CCR-16-2898
  • DeWire MD, Fuller C, Campagne O, et al. A Phase I and surgical study of ribociclib and everolimus in children with recurrent or refractory malignant brain tumors: a Pediatric Brain Tumor Consortium Study. Clin Cancer Res. 2021;27(9):2442–2451. doi:10.1158/1078-0432.CCR-20-4078
  • Jin D, Tran N, Thomas N, Tran DD. Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity. PLoS One. 2019;14(10):e0223555. doi:10.1371/journal.pone.0223555
  • Van Mater D, Gururangan S, Becher O, et al. A phase I trial of the CDK 4/6 inhibitor palbociclib in pediatric patients with progressive brain tumors: a Pediatric Brain Tumor Consortium study (PBTC-042). Pediatr Blood Cancer. 2021;68(4):e28879. doi:10.1002/pbc.28879
  • Alimova I, Murdock G, Pierce A, et al. The PARP inhibitor Rucaparib synergizes with radiation to attenuate atypical teratoid rhabdoid tumor growth. Neurooncol Adv. 2023;5(1):vdad010. doi:10.1093/noajnl/vdad010
  • Keung MYT, Wu Y, Vadgama JV. PARP inhibitors as a therapeutic agent for homologous recombination deficiency in breast cancers. J Clin Med. 2019;8(4):435. doi:10.3390/jcm8040435
  • Schafer ES, Rau RE, Berg SL, et al. Phase 1/2 trial of talazoparib in combination with temozolomide in children and adolescents with refractory/recurrent solid tumors including Ewing sarcoma: a Children’s Oncology Group Phase 1 Consortium study (ADVL1411). Pediatr Blood Cancer. 2020;67(2):e28073. doi:10.1002/pbc.28073
  • Keller KM, Koetsier J, Schild L, et al. The potential of PARP as a therapeutic target across pediatric solid malignancies. BMC Cancer. 2023;23(1):310. doi:10.1186/s12885-022-10319-7
  • Lv B, Wang Y, Ma D, et al. Immunotherapy: reshape the tumor immune microenvironment. Front Immunol. 2022;13:844142. doi:10.3389/fimmu.2022.844142
  • Grabovska Y, Mackay A, O’Hare P, et al. Pediatric pan-central nervous system tumor analysis of immune-cell infiltration identifies correlates of antitumor immunity. Nat Commun. 2020;11(1):4324. doi:10.1038/s41467-020-18070-y
  • Korman AJ, Garrett-Thomson SC, Lonberg N. The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nat Rev Drug Discov. 2022;21(7):509–528. doi:10.1038/s41573-021-00345-8
  • Geoerger B, Kang HJ, Yalon-Oren M, et al. Pembrolizumab in paediatric patients with advanced melanoma or a PD-L1-positive, advanced, relapsed, or refractory solid tumour or lymphoma (KEYNOTE-051): interim analysis of an open-label, single-arm, phase 1–2 trial. Lancet Oncol. 2020;21(1):121–133. doi:10.1016/S1470-2045(19)30671-0
  • Gorsi HS, Malicki DM, Barsan V, et al. Nivolumab in the treatment of recurrent or refractory pediatric brain tumors: a single institutional experience. J Pediatr Hematol Oncol. 2019;41(4):e235–e241. doi:10.1097/MPH.0000000000001339
  • Geoerger B, Zwaan CM, Marshall LV, et al. Atezolizumab for children and young adults with previously treated solid tumours, non-Hodgkin lymphoma, and Hodgkin lymphoma (iMATRIX): a multicentre phase 1–2 study. Lancet Oncol. 2020;21(1):134–144. doi:10.1016/S1470-2045(19)30693-X
  • Haydar D, Houke H, Chiang J, et al. Cell-surface antigen profiling of pediatric brain tumors: B7-H3 is consistently expressed and can be targeted via local or systemic CAR T-cell delivery. Neuro Oncol. 2021;23(6):999–1011. doi:10.1093/neuonc/noaa278
  • Rao P, Furst L, Meyran D, et al. Advances in CAR T cell immunotherapy for paediatric brain tumours. Front Oncol. 2022;12:873722. doi:10.3389/fonc.2022.873722
  • Vitanza NA, Johnson AJ, Wilson AL, et al. Locoregional infusion of HER2-specific CAR T cells in children and young adults with recurrent or refractory CNS tumors: an interim analysis. Nat Med. 2021;27(9):1544–1552. doi:10.1038/s41591-021-01404-8
  • Theruvath J, Sotillo E, Mount CW, et al. Locoregionally administered B7-H3-targeted CAR T cells for treatment of atypical teratoid/rhabdoid tumors. Nat Med. 2020;26(5):712–719. doi:10.1038/s41591-020-0821-8
  • Vitanza NA, Wilson AL, Huang W, et al. Intraventricular B7-H3 CAR T cells for diffuse intrinsic pontine glioma: preliminary first-in-human bioactivity and safety. Cancer Discov. 2023;13(1):114–131. doi:10.1158/2159-8290.CD-22-0750
  • Ravanpay AC, Gust J, Johnson AJ, et al. EGFR806-CAR T cells selectively target a tumor-restricted EGFR epitope in glioblastoma. Oncotarget. 2019;10(66):7080–7095. doi:10.18632/oncotarget.27389
  • Kramer K, Pandit-Taskar N, Kushner BH, et al. Phase 1 study of intraventricular (131)I-omburtamab targeting B7H3 (CD276)-expressing CNS malignancies. J Hematol Oncol. 2022;15(1):165. doi:10.1186/s13045-022-01383-4
  • Ghajar-Rahimi G, Kang KD, Totsch SK, et al. Clinical advances in oncolytic virotherapy for pediatric brain tumors. Pharmacol Ther. 2022;239:108193. doi:10.1016/j.pharmthera.2022.108193
  • Mineta T, Rabkin SD, Yazaki T, Hunter WD, Martuza RL. Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med. 1995;1(9):938–943. doi:10.1038/nm0995-938
  • Friedman GK, Johnston JM, Bag AK, et al. Oncolytic HSV-1 G207 immunovirotherapy for pediatric high-grade gliomas. N Engl J Med. 2021;384(17):1613–1622. doi:10.1056/NEJMoa2024947
  • Bernstock JD, Bag AK, Fiveash J, et al. Design and rationale for first-in-human Phase 1 immunovirotherapy clinical trial of oncolytic HSV G207 to treat malignant pediatric cerebellar brain tumors. Hum Gene Ther. 2020;31(19–20):1132–1139. doi:10.1089/hum.2020.101
  • Schuelke MR, Gundelach JH, Coffey M, et al. Phase I trial of sargramostim/pelareorep therapy in pediatric patients with recurrent or refractory high-grade brain tumors. Neurooncol Adv. 2022;4(1):vdac085. doi:10.1093/noajnl/vdac085
  • Dörig RE, Marcil A, Chopra A, Richardson CD. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell. 1993;75(2):295–305. doi:10.1016/0092-8674(93)80071-L
  • Anderson BD, Nakamura T, Russell SJ, Peng KW. High CD46 receptor density determines preferential killing of tumor cells by oncolytic measles virus. Cancer Res. 2004;64(14):4919–4926. doi:10.1158/0008-5472.CAN-04-0884
  • Fishelson Z, Donin N, Zell S, Schultz S, Kirschfink M. Obstacles to cancer immunotherapy: expression of membrane complement regulatory proteins (mCRPs) in tumors. Mol Immunol. 2003;40(2–4):109–123. doi:10.1016/S0161-5890(03)00112-3
  • Müller L, Berkeley R, Barr T, Ilett E, Errington-Mais E-MF. Past, present and future of oncolytic reovirus. Cancers. 2020;12(11):3219. doi:10.3390/cancers12113219
  • Setton J, Zinda M, Riaz N, et al. Synthetic lethality in cancer therapeutics: the next generation. Cancer Discov. 2021;11(7):1626–1635. doi:10.1158/2159-8290.CD-20-1503
  • Wang X, Wang S, Troisi EC, et al. BRD9 defines a SWI/SNF sub-complex and constitutes a specific vulnerability in malignant rhabdoid tumors. Nat Commun. 2019;10(1):1881. doi:10.1038/s41467-019-09891-7
  • Michel BC, D’Avino AR, Cassel SH, et al. A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. Nat Cell Biol. 2018;20(12):1410–1420. doi:10.1038/s41556-018-0221-1
  • Knipstein JA, Birks DK, Donson AM, Alimova I, Foreman NK, Vibhakar R. Histone deacetylase inhibition decreases proliferation and potentiates the effect of ionizing radiation in atypical teratoid/rhabdoid tumor cells. Neuro Oncol. 2012;14(2):175–183. doi:10.1093/neuonc/nor208
  • Bukowinski A, Chang B, Reid JM, et al. A phase 1 study of entinostat in children and adolescents with recurrent or refractory solid tumors, including CNS tumors: trial ADVL1513, Pediatric Early Phase-Clinical Trial Network (PEP-CTN). Pediatr Blood Cancer. 2021;68(4):e28892. doi:10.1002/pbc.28892
  • Alimova I, Wang D, Danis E, et al. Targeting the TP53/MDM2 axis enhances radiation sensitivity in atypical teratoid rhabdoid tumors. Int J Oncol. 2022;60(3). doi:10.3892/ijo.2022.5322
  • Liu Y, Peng X, Zeng T. Development and validation of a nomogram for predicting overall survival in pediatric patients with atypical teratoid/rhabdoid tumors. Turk Neurosurg. 2021. doi:10.5137/1019-5149.JTN.33034-20.2
  • Johann PD, Altendorf L, Efremova EM, et al. Recurrent atypical teratoid/rhabdoid tumors (AT/RT) reveal discrete features of progression on histology, epigenetics, copy number profiling, and transcriptomics. Acta Neuropathol. 2023;146(3):527–541. doi:10.1007/s00401-023-02608-7
  • Paassen I, Williams J, Rios Arceo C, et al. Atypical teratoid/rhabdoid tumoroids reveal subgroup-specific drug vulnerabilities. Oncogene. 2023;42(20):1661–1671. doi:10.1038/s41388-023-02681-y
  • Pagès M, Rotem D, Gydush G, et al. Liquid biopsy detection of genomic alterations in pediatric brain tumors from cell-free DNA in peripheral blood, CSF, and urine. Neuro Oncol. 2022;24(8):1352–1363. doi:10.1093/neuonc/noab299
  • Katsman E, Orlanski S, Martignano F, et al. Detecting cell-of-origin and cancer-specific methylation features of cell-free DNA from Nanopore sequencing. Genome Biol. 2022;23(1):158. doi:10.1186/s13059-022-02710-1
  • Patel A, Dogan H, Payne A, et al. Rapid-CNS(2): rapid comprehensive adaptive nanopore-sequencing of CNS tumors, a proof-of-concept study. Acta Neuropathol. 2022;143(5):609–612. doi:10.1007/s00401-022-02415-6
  • Euskirchen P, Bielle F, Labreche K, et al. Same-day genomic and epigenomic diagnosis of brain tumors using real-time nanopore sequencing. Acta Neuropathol. 2017;134(5):691–703. doi:10.1007/s00401-017-1743-5
  • Bowden R, Davies RW, Heger A, et al. Sequencing of human genomes with nanopore technology. Nat Commun. 2019;10(1):1869. doi:10.1038/s41467-019-09637-5
  • Afflerbach AK, Rohrandt C, Brändl B, et al. Classification of brain tumors by nanopore sequencing of cell-free DNA from cerebrospinal fluid. Clin Chem. 2023. doi:10.1093/clinchem/hvad115
  • Elghetany MT, J-M H, Shi-Qi LH, et al. Maximizing the potential of aggressive mouse tumor models in preclinical drug testing. Sci Rep. 2021;11(1):11580. doi:10.1038/s41598-021-91167-6
  • Han ZY, Richer W, Fréneaux P, et al. The occurrence of intracranial rhabdoid tumours in mice depends on temporal control of Smarcb1 inactivation. Nat Commun. 2016;7:10421. doi:10.1038/ncomms10421
  • Roberts CW, Galusha SA, McMenamin ME, Fletcher CD, Orkin SH. Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc Natl Acad Sci U S A. 2000;97(25):13796–13800. doi:10.1073/pnas.250492697
  • Melcher V, Graf M, Interlandi M, et al. Macrophage-tumor cell interaction promotes ATRT progression and chemoresistance. Acta Neuropathol. 2020;139(5):913–936. doi:10.1007/s00401-019-02116-7