103
Views
3
CrossRef citations to date
0
Altmetric
REVIEW

Cofilin Acts as a Booster for Progression of Malignant Tumors Represented by Glioma

, ORCID Icon, &
Pages 3245-3269 | Received 14 Sep 2022, Accepted 10 Nov 2022, Published online: 27 Nov 2023

References

  • Nishida E, Maekawa S, Sakai H. Cofilin, a protein in porcine brain that binds to actin filaments and inhibits their interactions with myosin and tropomyosin. Biochemistry. 1984;23(22):5307–5313. doi:10.1021/bi00317a032
  • Bamburg JR, Harris HE, Weeds AG. Partial purification and characterization of an actin depolymerizing factor from brain. FEBS Lett. 1980;121(1):178–182. doi:10.1016/0014-5793(80)81292-0
  • Bamburg JR. Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu Rev Cell Dev Biol. 1999;15:185–230. doi:10.1146/annurev.cellbio.15.1.185
  • Maciver SK, Hussey PJ. The ADF/cofilin family: actin-remodeling proteins. Genome Biol. 2002;3(5):3007. doi:10.1186/gb-2002-3-5-reviews3007
  • Pollard TD, Blanchoin L, Mullins RD. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct. 2000;29:545–576. doi:10.1146/annurev.biophys.29.1.545
  • Bamburg JR, Bray D. Distribution and cellular localization of actin depolymerizing factor. J Cell Biol. 1987;105(6 Pt 1):2817–2825. doi:10.1083/jcb.105.6.2817
  • Svitkina TM, Borisy GG. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J Cell Biol. 1999;145(5):1009–1026. doi:10.1083/jcb.145.5.1009
  • Carlier MF, Laurent V, Santolini J, et al. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol. 1997;136(6):1307–1322. doi:10.1083/jcb.136.6.1307
  • Maciver SK. How ADF/cofilin depolymerizes actin filaments. Curr Opin Cell Biol. 1998;10(1):140–144. doi:10.1016/s0955-0674(98)80097-5
  • Wioland H, Guichard B, Senju Y, et al. ADF/Cofilin accelerates actin dynamics by severing filaments and promoting their depolymerization at both ends. Curr Biol. 2017;27(13):1956–67.e7. doi:10.1016/j.cub.2017.05.048
  • Bernstein BW, Painter WB, Chen H, Minamide LS, Abe H, Bamburg JR. Intracellular pH modulation of ADF/cofilin proteins. Cell Motil Cytoskeleton. 2000;47(4):319–336. doi:10.1002/1097-0169(200012)47:4<319::Aid-cm6>3.0.Co;2-i
  • Yoo Y, Ho HJ, Wang C, Guan JL. Tyrosine phosphorylation of cofilin at Y68 by v-Src leads to its degradation through ubiquitin-proteasome pathway. Oncogene. 2010;29(2):263–272. doi:10.1038/onc.2009.319
  • Frantz C, Barreiro G, Dominguez L, et al. Cofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding. J Cell Biol. 2008;183(5):865–879. doi:10.1083/jcb.200804161
  • Ishikawa-Ankerhold HC, Daszkiewicz W, Schleicher M, Müller-Taubenberger A. Actin-interacting protein 1 contributes to intranuclear rod assembly in dictyostelium discoideum. Sci Rep. 2017;7(1):40310. doi:10.1038/srep40310
  • Zhu Y, Xu Y, Chen T, et al. TSG101 promotes the proliferation, migration, and invasion of human glioma cells by regulating the AKT/GSK3β/β-catenin and RhoC/cofilin pathways. Mol Neurobiol. 2021;58(5):2118–2132. doi:10.1007/s12035-020-02231-7
  • Lee MH, Kundu JK, Chae JI, Shim JH. Targeting ROCK/LIMK/cofilin signaling pathway in cancer. Arch Pharm Res. 2019;42(6):481–491. doi:10.1007/s12272-019-01153-w
  • Sousa-Squiavinato ACM, Rocha MR, Barcellos-de-souza P, de Souza WF, Morgado-Diaz JA. Cofilin-1 signaling mediates epithelial-mesenchymal transition by promoting actin cytoskeleton reorganization and cell-cell adhesion regulation in colorectal cancer cells. Biochim Biophys Acta Mol Cell Res. 2019;1866(3):418–429. doi:10.1016/j.bbamcr.2018.10.003
  • Popow-Woźniak A, Mazur AJ, Mannherz HG, Malicka-Błaszkiewicz M, Nowak D. Cofilin overexpression affects actin cytoskeleton organization and migration of human colon adenocarcinoma cells. Histochem Cell Biol. 2012;138(5):725–736. doi:10.1007/s00418-012-0988-2
  • Wicki A, Lehembre F, Wick N, Hantusch B, Kerjaschki D, Christofori G. Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell. 2006;9(4):261–272. doi:10.1016/j.ccr.2006.03.010
  • Yu X, Zech T, McDonald L, et al. N-WASP coordinates the delivery and F-actin-mediated capture of MT1-MMP at invasive pseudopods. J Cell Biol. 2012;199(3):527–544. doi:10.1083/jcb.201203025
  • Dalaka E, Kronenberg NM, Liehm P, Segall JE, Prystowsky MB, Gather MC. Direct measurement of vertical forces shows correlation between mechanical activity and proteolytic ability of invadopodia. Sci Adv. 2020;6(11):eaax6912. doi:10.1126/sciadv.aax6912
  • Ono S, Minami N, Abe H, Obinata T. Characterization of a novel cofilin isoform that is predominantly expressed in mammalian skeletal muscle. J Biol Chem. 1994;269(21):15280–15286.
  • Gillett GT, Fox MF, Rowe PS, Casimir CM, Povey S. Mapping of human non-muscle type cofilin (CFL1) to chromosome 11q13 and muscle-type cofilin (CFL2) to chromosome 14. Ann Hum Genet. 1996;60(3):201–211. doi:10.1111/j.1469-1809.1996.tb00423.x
  • Thirion C, Stucka R, Mendel B, et al. Characterization of human muscle type cofilin (CFL2) in normal and regenerating muscle. Eur J Biochem. 2001;268(12):3473–3482. doi:10.1046/j.1432-1327.2001.02247.x
  • Goroncy AK, Koshiba S, Tochio N, et al. NMR solution structures of actin depolymerizing factor homology domains. Protein Sci. 2009;18(11):2384–2392. doi:10.1002/pro.248
  • Singh BK, Sattler JM, Chatterjee M, Huttu J, Schüler H, Kursula I. Crystal structures explain functional differences in the two actin depolymerization factors of the malaria parasite. J Biol Chem. 2011;286(32):28256–28264. doi:10.1074/jbc.M111.211730
  • Peitsch WK, Grund C, Kuhn C, et al. Drebrin is a widespread actin-associating protein enriched at junctional plaques, defining a specific microfilament Anchorage system in polar epithelial cells. Eur J Cell Biol. 1999;78(11):767–778. doi:10.1016/s0171-9335(99)80027-2
  • Lappalainen P, Kessels MM, Cope MJ, Drubin DG. The ADF homology (ADF-H) domain: a highly exploited actin-binding module. Mol Biol Cell. 1998;9(8):1951–1959. doi:10.1091/mbc.9.8.1951
  • Dos Remedios CG, Chhabra D, Kekic M, et al. Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev. 2003;83(2):433–473. doi:10.1152/physrev.00026.2002
  • Pope BJ, Zierler-Gould KM, Kühne R, Weeds AG, Ball LJ. Solution structure of human cofilin: actin binding, pH sensitivity, and relationship to actin-depolymerizing factor. J Biol Chem. 2004;279(6):4840–4848. doi:10.1074/jbc.M310148200
  • Van Troys M, Dewitte D, Verschelde JL, Goethals M, Vandekerckhove J, Ampe C. The competitive interaction of actin and PIP2 with actophorin is based on overlapping target sites: design of a gain-of-function mutant. Biochemistry. 2000;39(40):12181–12189. doi:10.1021/bi000816c
  • Wegner A. Treadmilling of actin at physiological salt concentrations. An analysis of the critical concentrations of actin filaments. J Mol Biol. 1982;161(4):607–615. doi:10.1016/0022-2836(82)90411-9
  • Neuhaus JM, Wanger M, Keiser T, Wegner A. Treadmilling of actin. J Muscle Res Cell Motil. 1983;4(5):507–527. doi:10.1007/bf00712112
  • Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell. 2003;112(4):453–465. doi:10.1016/s0092-8674(03)00120-x
  • Plastino J, Blanchoin L. Dynamic stability of the actin ecosystem. J Cell Sci. 2018;132(4). doi:10.1242/jcs.219832
  • Pollard TD, Cooper JA. Quantitative analysis of the effect of Acanthamoeba profilin on actin filament nucleation and elongation. Biochemistry. 1984;23(26):6631–6641. doi:10.1021/bi00321a054
  • Buracco S, Claydon S, Insall R. Control of actin dynamics during cell motility. F1000Res. 2019;8. doi:10.12688/f1000research.18669.1.
  • Pollard TD. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct. 2007;36:451–477. doi:10.1146/annurev.biophys.35.040405.101936
  • Van Troys M, Huyck L, Leyman S, Dhaese S, Vandekerkhove J, Ampe C. Ins and outs of ADF/cofilin activity and regulation. Eur J Cell Biol. 2008;87(8–9):649–667. doi:10.1016/j.ejcb.2008.04.001
  • Kueh HY, Brieher WM, Mitchison TJ. Dynamic stabilization of actin filaments. Proc Natl Acad Sci USA. 2008;105(43):16531–16536. doi:10.1073/pnas.0807394105
  • Rotty JD, Wu C, Haynes EM, et al. Profilin-1 serves as a gatekeeper for actin assembly by Arp2/3-dependent and -independent pathways. Dev Cell. 2015;32(1):54–67. doi:10.1016/j.devcel.2014.10.026
  • Pollard TD. Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J Cell Biol. 1986;103(6 Pt 2):2747–2754. doi:10.1083/jcb.103.6.2747
  • Fujiwara I, Takahashi S, Tadakuma H, Funatsu T, Ishiwata S. Microscopic analysis of polymerization dynamics with individual actin filaments. Nat Cell Biol. 2002;4(9):666–673. doi:10.1038/ncb841
  • Wang R, Carlsson AE. How capping protein enhances actin filament growth and nucleation on biomimetic beads. Phys Biol. 2015;12(6):066008. doi:10.1088/1478-3975/12/6/066008
  • Roland J, Berro J, Michelot A, Blanchoin L, Martiel JL. Stochastic severing of actin filaments by actin depolymerizing factor/cofilin controls the emergence of a steady dynamical regime. Biophys J. 2008;94(6):2082–2094. doi:10.1529/biophysj.107.121988
  • McGough A, Pope B, Chiu W, Weeds A. Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J Cell Biol. 1997;138(4):771–781. doi:10.1083/jcb.138.4.771
  • Blanchoin L, Pollard TD, Mullins RD. Interactions of ADF/cofilin, Arp2/3 complex, capping protein and profilin in remodeling of branched actin filament networks. Curr Biol. 2000;10(20):1273–1282. doi:10.1016/s0960-9822(00)00749-1
  • Bernstein BW, Bamburg JR. ADF/cofilin: a functional node in cell biology. Trends Cell Biol. 2010;20(4):187–195. doi:10.1016/j.tcb.2010.01.001
  • Rosenblatt J, Peluso P, Mitchison TJ. The bulk of unpolymerized actin in Xenopus egg extracts is ATP-bound. Mol Biol Cell. 1995;6(2):227–236. doi:10.1091/mbc.6.2.227
  • Sept D, McCammon JA. Thermodynamics and kinetics of actin filament nucleation. Biophys J. 2001;81(2):667–674. doi:10.1016/s0006-3495(01)75731-1
  • Fedorov AA, Lappalainen P, Fedorov EV, Drubin DG, Almo SC. Structure determination of yeast cofilin. Nat Struct Biol. 1997;4(5):366–369. doi:10.1038/nsb0597-366
  • Pope BJ, Gonsior SM, Yeoh S, McGough A, Weeds AG. Uncoupling actin filament fragmentation by cofilin from increased subunit turnover. J Mol Biol. 2000;298(4):649–661. doi:10.1006/jmbi.2000.3688
  • Andrianantoandro E, Pollard TD. Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell. 2006;24(1):13–23. doi:10.1016/j.molcel.2006.08.006
  • Bamburg JR, Bernstein BW. ADF/cofilin. Curr Biol. 2008;18(7):R273–5. doi:10.1016/j.cub.2008.02.002
  • Agnew BJ, Minamide LS, Bamburg JR. Reactivation of phosphorylated actin depolymerizing factor and identification of the regulatory site. J Biol Chem. 1995;270(29):17582–17587. doi:10.1074/jbc.270.29.17582
  • Kanellos G, Frame MC. Cellular functions of the ADF/cofilin family at a glance. J Cell Sci. 2016;129(17):3211–3218. doi:10.1242/jcs.187849
  • Arber S, Barbayannis FA, Hanser H, et al. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature. 1998;393(6687):805–809. doi:10.1038/31729
  • Yang N, Higuchi O, Ohashi K, et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature. 1998;393(6687):809–812. doi:10.1038/31735
  • Toshima J, Toshima JY, Takeuchi K, Mori R, Mizuno K. Cofilin phosphorylation and actin reorganization activities of testicular protein kinase 2 and its predominant expression in testicular Sertoli cells. J Biol Chem. 2001;276(33):31449–31458. doi:10.1074/jbc.M102988200
  • Scott RW, Olson MF. LIM kinases: function, regulation and association with human disease. J Mol Med (Berl). 2007;85(6):555–568. doi:10.1007/s00109-007-0165-6
  • Po’uha ST, Shum MS, Goebel A, Bernard O, Kavallaris M. LIM-kinase 2, a regulator of actin dynamics, is involved in mitotic spindle integrity and sensitivity to microtubule-destabilizing drugs. Oncogene. 2010;29(4):597–607. doi:10.1038/onc.2009.367
  • Hamill S, Lou HJ, Turk BE, Boggon TJ. Structural basis for noncanonical substrate recognition of Cofilin/ADF proteins by LIM kinases. Mol Cell. 2016;62(3):397–408. doi:10.1016/j.molcel.2016.04.001
  • Maekawa M, Ishizaki T, Boku S, et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science. 1999;285(5429):895–898. doi:10.1126/science.285.5429.895
  • Edwards DC, Sanders LC, Bokoch GM, Gill GN. Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol. 1999;1(5):253–259. doi:10.1038/12963
  • Amano T, Tanabe K, Eto T, Narumiya S, Mizuno K. LIM-kinase 2 induces formation of stress fibres, focal adhesions and membrane blebs, dependent on its activation by Rho-associated kinase-catalysed phosphorylation at threonine-505. Biochem J. 2001;354(Pt 1):149–159. doi:10.1042/0264-6021:
  • Sumi T, Matsumoto K, Nakamura T. Specific activation of LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase. J Biol Chem. 2001;276(1):670–676. doi:10.1074/jbc.M007074200
  • Ahmed T, Shea K, Masters JR, Jones GE, Wells CM. A PAK4-LIMK1 pathway drives prostate cancer cell migration downstream of HGF. Cell Signal. 2008;20(7):1320–1328. doi:10.1016/j.cellsig.2008.02.021
  • Sumi T, Matsumoto K, Shibuya A, Nakamura T. Activation of LIM kinases by myotonic dystrophy kinase-related Cdc42-binding kinase alpha. J Biol Chem. 2001;276(25):23092–23096. doi:10.1074/jbc.C100196200
  • Ohashi K, Nagata K, Maekawa M, Ishizaki T, Narumiya S, Mizuno K. Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop. J Biol Chem. 2000;275(5):3577–3582. doi:10.1074/jbc.275.5.3577
  • Foletta VC, Lim MA, Soosairajah J, et al. Direct signaling by the BMP type II receptor via the cytoskeletal regulator LIMK1. J Cell Biol. 2003;162(6):1089–1098. doi:10.1083/jcb.200212060
  • Schlau M, Terheyden-Keighley D, Theis V, Mannherz HG, Theiss C. VEGF triggers the activation of cofilin and the Arp2/3 complex within the growth cone. Int J Mol Sci. 2018;19(2). doi:10.3390/ijms19020384
  • Song IS, Kang SS, Kim ES, et al. Heat shock protein 27 phosphorylation is involved in epithelial cell apoptosis as well as epithelial migration during corneal epithelial wound healing. Exp Eye Res. 2014;118:36–41. doi:10.1016/j.exer.2013.11.002
  • Pandey D, Goyal P, Siess W. Lysophosphatidic acid stimulation of platelets rapidly induces Ca2+-dependent dephosphorylation of cofilin that is independent of dense granule secretion and aggregation. Blood Cells Mol Dis. 2007;38(3):269–279. doi:10.1016/j.bcmd.2007.01.002
  • Reschke CR, Silva LFA, Vangoor VR, et al. Systemic delivery of antagomirs during blood-brain barrier disruption is disease-modifying in experimental epilepsy. Mol Ther. 2021;29(6):2041–2052. doi:10.1016/j.ymthe.2021.02.021
  • Castañeda P, Muñoz M, García-Rojo G, et al. Association of N-cadherin levels and downstream effectors of Rho GTPases with dendritic spine loss induced by chronic stress in rat hippocampal neurons. J Neurosci Res. 2015;93(10):1476–1491. doi:10.1002/jnr.23602
  • Toshima J, Toshima JY, Amano T, Yang N, Narumiya S, Mizuno K. Cofilin phosphorylation by protein kinase testicular protein kinase 1 and its role in integrin-mediated actin reorganization and focal adhesion formation. Mol Biol Cell. 2001;12(4):1131–1145. doi:10.1091/mbc.12.4.1131
  • Huang TY, DerMardirossian C, Bokoch GM. Cofilin phosphatases and regulation of actin dynamics. Curr Opin Cell Biol. 2006;18(1):26–31. doi:10.1016/j.ceb.2005.11.005
  • Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T. Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell. 2002;108(2):233–246. doi:10.1016/s0092-8674(01)00638-9
  • Ohta Y, Kousaka K, Nagata-Ohashi K, et al. Differential activities, subcellular distribution and tissue expression patterns of three members of Slingshot family phosphatases that dephosphorylate cofilin. Genes Cells. 2003;8(10):811–824. doi:10.1046/j.1365-2443.2003.00678.x
  • Soosairajah J, Maiti S, Wiggan O, et al. Interplay between components of a novel LIM kinase-slingshot phosphatase complex regulates cofilin. EMBO j. 2005;24(3):473–486. doi:10.1038/sj.emboj.7600543
  • Kurita S, Gunji E, Ohashi K, Mizuno K. Actin filaments-stabilizing and -bundling activities of cofilin-phosphatase Slingshot-1. Genes Cells. 2007;12(5):663–676. doi:10.1111/j.1365-2443.2007.01078.x
  • Yamamoto M, Nagata-Ohashi K, Ohta Y, Ohashi K, Mizuno K. Identification of multiple actin-binding sites in cofilin-phosphatase Slingshot-1L. FEBS Lett. 2006;580(7):1789–1794. doi:10.1016/j.febslet.2006.02.034
  • Kurita S, Watanabe Y, Gunji E, Ohashi K, Mizuno K. Molecular dissection of the mechanisms of substrate recognition and F-actin-mediated activation of cofilin-phosphatase Slingshot-1. J Biol Chem. 2008;283(47):32542–32552. doi:10.1074/jbc.M804627200
  • Mizuno K. Signaling mechanisms and functional roles of cofilin phosphorylation and dephosphorylation. Cell Signal. 2013;25(2):457–469. doi:10.1016/j.cellsig.2012.11.001
  • Ichetovkin I, Grant W, Condeelis J. Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex. Curr Biol. 2002;12(1):79–84. doi:10.1016/s0960-9822(01)00629-7
  • Orlova A, Shvetsov A, Galkin VE, et al. Actin-destabilizing factors disrupt filaments by means of a time reversal of polymerization. Proc Natl Acad Sci U S A. 2004;101(51):17664–17668. doi:10.1073/pnas.0407525102
  • Bobkov AA, Muhlrad A, Pavlov DA, Kokabi K, Yilmaz A, Reisler E. Cooperative effects of cofilin (ADF) on actin structure suggest allosteric mechanism of cofilin function. J Mol Biol. 2006;356(2):325–334. doi:10.1016/j.jmb.2005.11.072
  • Chan C, Beltzner CC, Pollard TD. Cofilin dissociates Arp2/3 complex and branches from actin filaments. Curr Biol. 2009;19(7):537–545. doi:10.1016/j.cub.2009.02.060
  • Minamide LS, Striegl AM, Boyle JA, Meberg PJ, Bamburg JR. Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function. Nat Cell Biol. 2000;2(9):628–636. doi:10.1038/35023579
  • Park JB, Agnihotri S, Golbourn B, et al. Transcriptional profiling of GBM invasion genes identifies effective inhibitors of the LIM kinase-Cofilin pathway. Oncotarget. 2014;5(19):9382–9395. doi:10.18632/oncotarget.2412
  • Liu W, Zhang Q, Tang Q, et al. Lycorine inhibits cell proliferation and migration by inhibiting ROCK1/cofilin‑induced actin dynamics in HepG2 hepatoblastoma cells. Oncol Rep. 2018;40(4):2298–2306. doi:10.3892/or.2018.6609
  • Wei R, Zhang Y, Shen L, et al. Comparative proteomic and radiobiological analyses in human lung adenocarcinoma cells. Mol Cell Biochem. 2012;359(1–2):151–159. doi:10.1007/s11010-011-1008-x
  • Collazo J, Zhu B, Larkin S, et al. Cofilin drives cell-invasive and metastatic responses to TGF-β in prostate cancer. Cancer Res. 2014;74(8):2362–2373. doi:10.1158/0008-5472.Can-13-3058
  • Maimaiti Y, Tan J, Liu Z, et al. Overexpression of cofilin correlates with poor survival in breast cancer: a tissue microarray analysis. Oncol Lett. 2017;14(2):2288–2294. doi:10.3892/ol.2017.6413
  • Lu LI, Fu NI, Luo XU, Li XY, Li XP. Overexpression of cofilin 1 in prostate cancer and the corresponding clinical implications. Oncol Lett. 2015;9(6):2757–2761. doi:10.3892/ol.2015.3133
  • Zhang Y, Tong X. Expression of the actin-binding proteins indicates that cofilin and fascin are related to breast tumour size. J Int Med Res. 2010;38(3):1042–1048. doi:10.1177/147323001003800331
  • Wu Q, Jiang Y, Cui S, Wang Y, Wu X. The role of cofilin-l in vulvar squamous cell carcinoma: a marker of carcinogenesis, progression and targeted therapy. Oncol Rep. 2016;35(5):2743–2754. doi:10.3892/or.2016.4625
  • Satoh M, Takano S, Sogawa K, et al. Immune-complex level of cofilin-1 in sera is associated with cancer progression and poor prognosis in pancreatic cancer. Cancer Sci. 2017;108(4):795–803. doi:10.1111/cas.13181
  • Sun W, Yan H, Qian C, et al. Cofilin-1 and phosphoglycerate kinase 1 as promising indicators for glioma radiosensibility and prognosis. Oncotarget. 2017;8(33):55073–55083. doi:10.18632/oncotarget.19025
  • Xu H, Chen Y, Tan C, et al. High expression of WDR1 in primary glioblastoma is associated with poor prognosis. Am J Transl Res. 2016;8(2):1253–1264.
  • Erkutlu I, Cigiloglu A, Kalender ME, et al. Correlation between Rho-kinase pathway gene expressions and development and progression of glioblastoma multiforme. Tumour Biol. 2013;34(2):1139–1144. doi:10.1007/s13277-013-0655-9
  • Tang Z, Araysi LM, Fathallah-Shaykh HM. c-Src and neural Wiskott-Aldrich syndrome protein (N-WASP) promote low oxygen-induced accelerated brain invasion by gliomas. PLoS One. 2013;8(9):e75436. doi:10.1371/journal.pone.0075436
  • Yan H, Yang K, Xiao H, Zou YJ, Zhang WB, Liu HY. Over-expression of cofilin-1 and phosphoglycerate kinase 1 in astrocytomas involved in pathogenesis of radioresistance. CNS Neurosci Ther. 2012;18(9):729–736. doi:10.1111/j.1755-5949.2012.00353.x
  • Yang ZL, Miao X, Xiong L, et al. CFL1 and Arp3 are biomarkers for metastasis and poor prognosis of squamous cell/adenosquamous carcinomas and adenocarcinomas of gallbladder. Cancer Invest. 2013;31(2):132–139. doi:10.3109/07357907.2012.756113
  • Tsai CH, Lin LT, Wang CY, et al. Over-expression of cofilin-1 suppressed growth and invasion of cancer cells is associated with up-regulation of let-7 microRNA. Biochim Biophys Acta. 2015;1852(5):851–861. doi:10.1016/j.bbadis.2015.01.007
  • Chung H, Kim B, Jung SH, et al. Does phosphorylation of cofilin affect the progression of human bladder cancer? BMC Cancer. 2013;13(1):45. doi:10.1186/1471-2407-13-45
  • Zheng Y, Fang Y, Li S, Zheng B. 血浆cofilin蛋白检测在肺癌诊断中的价值. 南方医科大学学报 [Detection of plasma cofilin protein for diagnosis of lung cancer]. Nan Fang Yi Ke Da Xue Xue Bao. 2013;33(10):1551–1553. Chinese
  • Becker M, De Bastiani MA, Müller CB, Markoski MM, Castro MA, Klamt F. High cofilin-1 levels correlate with cisplatin resistance in lung adenocarcinomas. Tumour Biol. 2014;35(2):1233–1238. doi:10.1007/s13277-013-1164-6
  • Ding SJ, Li Y, Shao XX, et al. Proteome analysis of hepatocellular carcinoma cell strains, MHCC97-H and MHCC97-L, with different metastasis potentials. Proteomics. 2004;4(4):982–994. doi:10.1002/pmic.200300653
  • Yamaguchi H, Condeelis J. Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta. 2007;1773(5):642–652. doi:10.1016/j.bbamcr.2006.07.001
  • Yamaguchi H, Lorenz M, Kempiak S, et al. Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J Cell Biol. 2005;168(3):441–452. doi:10.1083/jcb.200407076
  • Yap CT, Simpson TI, Pratt T, Price DJ, Maciver SK. The motility of glioblastoma tumour cells is modulated by intracellular cofilin expression in a concentration-dependent manner. Cell Motil Cytoskeleton. 2005;60(3):153–165. doi:10.1002/cm.20053
  • Bisi S, Disanza A, Malinverno C, Frittoli E, Palamidessi A, Scita G. Membrane and actin dynamics interplay at lamellipodia leading edge. Curr Opin Cell Biol. 2013;25(5):565–573. doi:10.1016/j.ceb.2013.04.001
  • Ideses Y, Brill-Karniely Y, Haviv L, Ben-Shaul A, Bernheim-Groswasser A. Arp2/3 branched actin network mediates filopodia-like bundles formation in vitro. PLoS One. 2008;3(9):e3297. doi:10.1371/journal.pone.0003297
  • Kiuchi T, Nagai T, Ohashi K, Mizuno K. Measurements of spatiotemporal changes in G-actin concentration reveal its effect on stimulus-induced actin assembly and lamellipodium extension. J Cell Biol. 2011;193(2):365–380. doi:10.1083/jcb.201101035
  • Shishkin S, Eremina L, Pashintseva N, Kovalev L, Kovaleva M. Cofilin-1 and other ADF/cofilin superfamily members in human malignant cells. Int J Mol Sci. 2016;18(1):10. doi:10.3390/ijms18010010
  • Ghosh M, Ichetovkin I, Song X, Condeelis JS, Lawrence DS. A new strategy for caging proteins regulated by kinases. J Am Chem Soc. 2002;124(11):2440–2441. doi:10.1021/ja017592l
  • Delorme V, Machacek M, DerMardirossian C, et al. Cofilin activity downstream of Pak1 regulates cell protrusion efficiency by organizing lamellipodium and lamella actin networks. Dev Cell. 2007;13(5):646–662. doi:10.1016/j.devcel.2007.08.011
  • Hoffmann L, Rust MB, Culmsee C. Actin(g) on mitochondria - A role for cofilin1 in neuronal cell death pathways. Biol Chem. 2019;400(9):1089–1097. doi:10.1515/hsz-2019-0120
  • Mardilovich K, Gabrielsen M, McGarry L, et al. Elevated LIM kinase 1 in nonmetastatic prostate cancer reflects its role in facilitating androgen receptor nuclear translocation. Mol Cancer Ther. 2015;14(1):246–258. doi:10.1158/1535-7163.Mct-14-0447
  • Yoshioka K, Foletta V, Bernard O, Itoh K. A role for LIM kinase in cancer invasion. Proc Natl Acad Sci U S A. 2003;100(12):7247–7252. doi:10.1073/pnas.1232344100
  • Manetti F. Recent findings confirm LIM domain kinases as emerging target candidates for cancer therapy. Curr Cancer Drug Targets. 2012;12(5):543–560. doi:10.2174/156800912800673266
  • Zhang W, Gan N, Zhou J. Immunohistochemical investigation of the correlation between LIM kinase 1 expression and development and progression of human ovarian carcinoma. J Int Med Res. 2012;40(3):1067–1073. doi:10.1177/147323001204000325
  • Guo H, Gu F, Li W, et al. Reduction of protein kinase C zeta inhibits migration and invasion of human glioblastoma cells. J Neurochem. 2009;109(1):203–213. doi:10.1111/j.1471-4159.2009.05946.x
  • Ma Y, Wang B, Li W, et al. Intersectin1-s is involved in migration and invasion of human glioma cells. J Neurosci Res. 2011;89(7):1079–1090. doi:10.1002/jnr.22616
  • Scott RW, Hooper S, Crighton D, et al. LIM kinases are required for invasive path generation by tumor and tumor-associated stromal cells. J Cell Biol. 2010;191(1):169–185. doi:10.1083/jcb.201002041
  • Choi JA, Lim IK. TIS21/BTG2 inhibits invadopodia formation by downregulating reactive oxygen species level in MDA-MB-231 cells. J Cancer Res Clin Oncol. 2013;139(10):1657–1665. doi:10.1007/s00432-013-1484-3
  • Aung A, Seo YN, Lu S, et al. 3D traction stresses activate protease-dependent invasion of cancer cells. Biophys J. 2014;107(11):2528–2537. doi:10.1016/j.bpj.2014.07.078
  • Kłopocka W, Korczyński J, Pomorski P. Cytoskeleton and nucleotide signaling in glioma C6 cells. Adv Exp Med Biol. 2020;1202:109–128. doi:10.1007/978-3-030-30651-9_6
  • Jin SG, Ryu HH, Li SY, et al. Nogo-A inhibits the migration and invasion of human malignant glioma U87MG cells. Oncol Rep. 2016;35(6):3395–3402. doi:10.3892/or.2016.4737
  • Schiapparelli P, Guerrero-Cazares H, Magaña-Maldonado R, et al. NKCC1 regulates migration ability of glioblastoma cells by modulation of actin dynamics and interacting with cofilin. EBioMedicine. 2017;21:94–103. doi:10.1016/j.ebiom.2017.06.020
  • Zhao K, Wang L, Li T, et al. The role of miR-451 in the switching between proliferation and migration in malignant glioma cells: AMPK signaling, mTOR modulation and Rac1 activation required. Int J Oncol. 2017;50(6):1989–1999. doi:10.3892/ijo.2017.3973
  • Glogowska A, Thanasupawat T, Beiko J, Pitz M, Hombach-Klonisch S, Klonisch T. Novel CTRP8-RXFP1-JAK3-STAT3 axis promotes Cdc42-dependent actin remodeling for enhanced filopodia formation and motility in human glioblastoma cells. Mol Oncol. 2022;16(2):368–387. doi:10.1002/1878-0261.12981
  • Shi C, Ren L, Sun C, et al. miR-29a/b/c function as invasion suppressors for gliomas by targeting CDC42 and predict the prognosis of patients. Br J Cancer. 2017;117(7):1036–1047. doi:10.1038/bjc.2017.255
  • Hou M, Liu X, Cao J, Chen B. SEPT7 overexpression inhibits glioma cell migration by targeting the actin cytoskeleton pathway. Oncol Rep. 2016;35(4):2003–2010. doi:10.3892/or.2016.4609
  • Zhang B, Gu F, She C, et al. Reduction of Akt2 inhibits migration and invasion of glioma cells. Int J Cancer. 2009;125(3):585–595. doi:10.1002/ijc.24314
  • Schulze M, Fedorchenko O, Zink TG, et al. Chronophin is a glial tumor modifier involved in the regulation of glioblastoma growth and invasiveness. Oncogene. 2016;35(24):3163–3177. doi:10.1038/onc.2015.376
  • Schulze M, Hutterer M, Sabo A, et al. Chronophin regulates active vitamin B6 levels and transcriptomic features of glioblastoma cell lines cultured under non-adherent, serum-free conditions. BMC Cancer. 2018;18(1):524. doi:10.1186/s12885-018-4440-4
  • Gondi CS, Kandhukuri N, Kondraganti S, et al. Down-regulation of uPAR and cathepsin B retards cofilin dephosphorylation. Int J Oncol. 2006;28(3):633–639.
  • Piña-Medina AG, Hansberg-Pastor V, González-Arenas A, Cerbón M, Camacho-Arroyo I. Progesterone promotes cell migration, invasion and cofilin activation in human astrocytoma cells. Steroids. 2016;105:19–25. doi:10.1016/j.steroids.2015.11.008
  • Sun J, He D, Fu Y, et al. A novel lncRNA ARST represses glioma progression by inhibiting ALDOA-mediated actin cytoskeleton integrity. J Exp Clin Cancer Res. 2021;40(1):187. doi:10.1186/s13046-021-01977-9
  • Peterburs P, Heering J, Link G, Pfizenmaier K, Olayioye MA, Hausser A. Protein kinase D regulates cell migration by direct phosphorylation of the cofilin phosphatase slingshot 1 like. Cancer Res. 2009;69(14):5634–5638. doi:10.1158/0008-5472.Can-09-0718
  • Zhuang H, Li Q, Zhang X, et al. Downregulation of glycine decarboxylase enhanced cofilin-mediated migration in hepatocellular carcinoma cells. Free Radic Biol Med. 2018;120:1–12. doi:10.1016/j.freeradbiomed.2018.03.003
  • Takahashi K, Okabe H, Kanno SI, Nagai T, Mizuno K. A pleckstrin homology-like domain is critical for F-actin binding and cofilin-phosphatase activity of Slingshot-1. Biochem Biophys Res Commun. 2017;482(4):686–692. doi:10.1016/j.bbrc.2016.11.095
  • Hayakawa K, Tatsumi H, Sokabe M. Actin filaments function as a tension sensor by tension-dependent binding of cofilin to the filament. J Cell Biol. 2011;195(5):721–727. doi:10.1083/jcb.201102039
  • Matsushita S, Inoue Y, Hojo M, Sokabe M, Adachi T. Effect of tensile force on the mechanical behavior of actin filaments. J Biomech. 2011;44(9):1776–1781. doi:10.1016/j.jbiomech.2011.04.012
  • Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 2019;29(3):212–226. doi:10.1016/j.tcb.2018.12.001
  • Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420–1428. doi:10.1172/jci39104
  • Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–196. doi:10.1038/nrm3758
  • Aiello NM, Maddipati R, Norgard RJ, et al. EMT subtype influences epithelial plasticity and mode of cell migration. Dev Cell. 2018;45(6):681–95.e4. doi:10.1016/j.devcel.2018.05.027
  • Cervantes-Arias A, Pang LY, Argyle DJ. Epithelial-mesenchymal transition as a fundamental mechanism underlying the cancer phenotype. Vet Comp Oncol. 2013;11(3):169–184. doi:10.1111/j.1476-5829.2011.00313.x
  • Kahlert UD, Nikkhah G, Maciaczyk J. Epithelial-to-mesenchymal(-like) transition as a relevant molecular event in malignant gliomas. Cancer Lett. 2013;331(2):131–138. doi:10.1016/j.canlet.2012.12.010
  • Tso CL, Shintaku P, Chen J, et al. Primary glioblastomas express mesenchymal stem-like properties. Mol Cancer Res. 2006;4(9):607–619. doi:10.1158/1541-7786.Mcr-06-0005
  • Iser IC, Pereira MB, Lenz G, Wink MR. The epithelial-to-mesenchymal transition-like process in glioblastoma: an updated systematic review and in silico investigation. Med Res Rev. 2017;37(2):271–313. doi:10.1002/med.21408
  • Lewis-Tuffin LJ, Rodriguez F, Giannini C, et al. Misregulated E-cadherin expression associated with an aggressive brain tumor phenotype. PLoS One. 2010;5(10):e13665. doi:10.1371/journal.pone.0013665
  • Mikheeva SA, Mikheev AM, Petit A, et al. TWIST1 promotes invasion through mesenchymal change in human glioblastoma. Mol Cancer. 2010;9:194. doi:10.1186/1476-4598-9-194
  • Yadav AK, Desai NS. Cancer stem cells: acquisition, characteristics, therapeutic implications, targeting strategies and future prospects. Stem Cell Rev Rep. 2019;15(3):331–355. doi:10.1007/s12015-019-09887-2
  • Lau EY, Ho NP, Lee TK. Cancer stem cells and their microenvironment: biology and therapeutic implications. Stem Cells Int. 2017;2017:3714190. doi:10.1155/2017/3714190
  • Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–715. doi:10.1016/j.cell.2008.03.027
  • Gupta PB, Onder TT, Jiang G, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138(4):645–659. doi:10.1016/j.cell.2009.06.034
  • Lee KH, Ahn EJ, Oh SJ, et al. KITENIN promotes glioma invasiveness and progression, associated with the induction of EMT and stemness markers. Oncotarget. 2015;6(5):3240–3253. doi:10.18632/oncotarget.3087
  • Zhang XH, Qian Y, Li Z, Zhang NN, Xie YJ. Let-7g-5p inhibits epithelial-mesenchymal transition consistent with reduction of glioma stem cell phenotypes by targeting VSIG4 in glioblastoma. Oncol Rep. 2016;36(5):2967–2975. doi:10.3892/or.2016.5098
  • Zhu T, Li X, Luo L, et al. Reversion of malignant phenotypes of human glioblastoma cells by β-elemene through β-catenin-mediated regulation of stemness-, differentiation- and epithelial-to-mesenchymal transition-related molecules. J Transl Med. 2015;13(1):356. doi:10.1186/s12967-015-0727-2
  • Tania M, Khan MA, Fu J. Epithelial to mesenchymal transition inducing transcription factors and metastatic cancer. Tumour Biol. 2014;35(8):7335–7342. doi:10.1007/s13277-014-2163-y
  • Derynck R, Muthusamy BP, Saeteurn KY. Signaling pathway cooperation in TGF-β-induced epithelial-mesenchymal transition. Curr Opin Cell Biol. 2014;31:56–66. doi:10.1016/j.ceb.2014.09.001
  • Xu Z, Gu C, Yao X, et al. CD73 promotes tumor metastasis by modulating RICS/RhoA signaling and EMT in gastric cancer. Cell Death Dis. 2020;11(3):202. doi:10.1038/s41419-020-2403-6
  • Islam SU, Ahmed MB, Lee SJ, et al. PRP4 kinase induces actin rearrangement and epithelial-mesenchymal transition through modulation of the actin-binding protein cofilin. Exp Cell Res. 2018;369(1):158–165. doi:10.1016/j.yexcr.2018.05.018
  • Häcker G. The morphology of apoptosis. Cell Tissue Res. 2000;301(1):5–17. doi:10.1007/s004410000193
  • Nijhawan D, Honarpour N, Wang X. Apoptosis in neural development and disease. Annu Rev Neurosci. 2000;23(1):73–87. doi:10.1146/annurev.neuro.23.1.73
  • Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging. 2016;8(4):603–619. doi:10.18632/aging.100934
  • Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer. 2002;2(4):277–288. doi:10.1038/nrc776
  • Nezhat F, Cohen C, Rahaman J, Gretz H, Cole P, Kalir T. Comparative immunohistochemical studies of bcl-2 and p53 proteins in benign and malignant ovarian endometriotic cysts. Cancer. 2002;94(11):2935–2940. doi:10.1002/cncr.10566
  • Nasu K, Nishida M, Kawano Y, et al. Aberrant expression of apoptosis-related molecules in endometriosis: a possible mechanism underlying the pathogenesis of endometriosis. Reprod Sci. 2011;18(3):206–218. doi:10.1177/1933719110392059
  • Chua BT, Volbracht C, Tan KO, Li R, Yu VC, Li P. Mitochondrial translocation of cofilin is an early step in apoptosis induction. Nat Cell Biol. 2003;5(12):1083–1089. doi:10.1038/ncb1070
  • Hatch AL, Gurel PS, Higgs HN. Novel roles for actin in mitochondrial fission. J Cell Sci. 2014;127(Pt 21):4549–4560. doi:10.1242/jcs.153791
  • Hu C, Huang Y, Li L. Drp1-Dependent Mitochondrial Fission Plays Critical Roles in Physiological and Pathological Progresses in Mammals. Int J Mol Sci. 2017;18(1):144. doi:10.3390/ijms18010144
  • Guo L, Cui C, Wang J, et al. PINCH-1 regulates mitochondrial dynamics to promote proline synthesis and tumor growth. Nat Commun. 2020;11(1):4913. doi:10.1038/s41467-020-18753-6
  • Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem. 2007;282(15):11521–11529. doi:10.1074/jbc.M607279200
  • Hu J, Zhang H, Li J, et al. ROCK1 activation-mediated mitochondrial translocation of Drp1 and cofilin are required for arnidiol-induced mitochondrial fission and apoptosis. J Exp Clin Cancer Res. 2020;39(1):37. doi:10.1186/s13046-020-01545-7
  • Zhang L, Cao H, Tao H, Yang J, Gong W, Hu Q. Effect of the interference with DRP1 expression on the biological characteristics of glioma stem cells. Exp Ther Med. 2021;22(1):696. doi:10.3892/etm.2021.10128
  • Otera H, Miyata N, Kuge O, Mihara K. Drp1-dependent mitochondrial fission via MiD49/51 is essential for apoptotic cristae remodeling. J Cell Biol. 2016;212(5):531–544. doi:10.1083/jcb.201508099
  • Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised Phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–466. doi:10.1016/s1470-2045(09)70025-7
  • Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–996. doi:10.1056/NEJMoa043330
  • Du HQ, Chen L, Wang Y, et al. Increasing radiosensitivity with the downregulation of cofilin-1 in U251 human glioma cells. Mol Med Rep. 2015;11(5):3354–3360. doi:10.3892/mmr.2014.3125
  • Zhou T, Wang CH, Yan H, et al. Inhibition of the Rac1-WAVE2-Arp2/3 signaling pathway promotes radiosensitivity via downregulation of cofilin-1 in U251 human glioma cells. Mol Med Rep. 2016;13(5):4414–4420. doi:10.3892/mmr.2016.5088
  • Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7(1):41–53. doi:10.1038/nrn1824
  • Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer. 2020;20(1):26–41. doi:10.1038/s41568-019-0205-x
  • Idbaih A, Ducray F, Sierra Del Rio M, Hoang-Xuan K, Delattre JY. Therapeutic application of noncytotoxic molecular targeted therapy in gliomas: growth factor receptors and angiogenesis inhibitors. Oncologist. 2008;13(9):978–992. doi:10.1634/theoncologist.2008-0056
  • Xie H, Xue YX, Liu LB, Liu YH, Wang P. Role of RhoA/ROCK signaling in endothelial-monocyte-activating polypeptide II opening of the blood-tumor barrier: role of RhoA/ROCK signaling in EMAP II opening of the BTB. J Mol Neurosci. 2012;46(3):666–676. doi:10.1007/s12031-011-9564-9
  • Li Z, Liu YH, Xue YX, Liu LB, Wang P. Signal mechanisms underlying low-dose endothelial monocyte-activating polypeptide-II-induced opening of the blood-tumor barrier. J Mol Neurosci. 2012;48(1):291–301. doi:10.1007/s12031-012-9776-7
  • Li Z, Liu XB, Liu YH, et al. Low-dose endothelial monocyte-activating polypeptide-II increases blood-tumor barrier permeability by activating the RhoA/ROCK/PI3K signaling pathway. J Mol Neurosci. 2016;59(2):193–202. doi:10.1007/s12031-015-0668-5
  • Kim JW, Gao P, Liu YC, Semenza GL, Dang CV. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol. 2007;27(21):7381–7393. doi:10.1128/mcb.00440-07
  • Wolf A, Agnihotri S, Micallef J, et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med. 2011;208(2):313–326. doi:10.1084/jem.20101470
  • Ghosh S, Paul A, Sen E. Tumor necrosis factor α-induced hypoxia-inducible factor 1α-β-catenin axis regulates major histocompatibility complex class I gene activation through chromatin remodeling. Mol Cell Biol. 2013;33(14):2718–2731. doi:10.1128/mcb.01254-12
  • Ghosh S, Gupta P, Sen E. TNFα driven HIF-1α-hexokinase II axis regulates MHC-I cluster stability through actin cytoskeleton. Exp Cell Res. 2016;340(1):116–124. doi:10.1016/j.yexcr.2015.11.016
  • Lewinska A, Klukowska-Rötzler J, Deregowska A, Adamczyk-Grochala J, Wnuk M. c-Myc activation promotes cofilin-mediated F-actin cytoskeleton remodeling and telomere homeostasis as a response to oxidant-based DNA damage in medulloblastoma cells. Redox Biol. 2019;24:101163. doi:10.1016/j.redox.2019.101163
  • Obrdlik A, The PP. F-actin severing protein cofilin-1 is required for RNA polymerase II transcription elongation. Nucleus. 2011;2(1):72–79. doi:10.4161/nucl.2.1.14508
  • Müller CB, de Barros RL, Castro MA, et al. Validation of cofilin-1 as a biomarker in non-small cell lung cancer: application of quantitative method in a retrospective cohort. J Cancer Res Clin Oncol. 2011;137(9):1309–1316. doi:10.1007/s00432-011-1001-5
  • Rak R, Haklai R, Elad-Tzfadia G, Wolfson HJ, Carmeli S, Novel KY. LIMK2 Inhibitor blocks Panc-1 tumor growth in a mouse xenograft model. Oncoscience. 2014;1(1):39–48. doi:10.18632/oncoscience.7
  • Wang X, Zou S, Ren T, et al. Alantolactone suppresses the metastatic phenotype and induces the apoptosis of glioblastoma cells by targeting LIMK kinase activity and activating the cofilin/G‑actin signaling cascade. Int J Mol Med. 2021;47(5). doi:10.3892/ijmm.2021.4901
  • Porcù E, Maule F, Boso D, et al. BMP9 counteracts the tumorigenic and pro-angiogenic potential of glioblastoma. Cell Death Differ. 2018;25(10):1808–1822. doi:10.1038/s41418-018-0149-9
  • Hua D, Zhao Q, Yu Y, et al. Eucalyptal A inhibits glioma by rectifying oncogenic splicing of MYO1B mRNA via suppressing SRSF1 expression. Eur J Pharmacol. 2021;890:173669. doi:10.1016/j.ejphar.2020.173669
  • Xing JS, Wang X, Lan YL, et al. Isoalantolactone inhibits IKKβ kinase activity to interrupt the NF-κB/COX-2-mediated signaling cascade and induces apoptosis regulated by the mitochondrial translocation of cofilin in glioblastoma. Cancer Med. 2019;8(4):1655–1670. doi:10.1002/cam4.2013
  • Tang Q, Ji Q, Tang Y, et al. Mitochondrial translocation of cofilin-1 promotes apoptosis of gastric cancer BGC-823 cells induced by ursolic acid. Tumour Biol. 2014;35(3):2451–2459. doi:10.1007/s13277-013-1325-7
  • Li R, Wang X, Zhang XH, Chen HH, Liu YD. Ursolic acid promotes apoptosis of SGC-7901 gastric cancer cells through ROCK/PTEN mediated mitochondrial translocation of cofilin-1. Asian Pac J Cancer Prev. 2014;15(22):9593–9597. doi:10.7314/apjcp.2014.15.22.9593
  • Prełowska M, Kaczyńska A, Herman-Antosiewicz A. 4-(Methylthio)butyl isothiocyanate inhibits the proliferation of breast cancer cells with different receptor status. Pharmacol Rep. 2017;69(5):1059–1066. doi:10.1016/j.pharep.2017.04.014
  • Wang Q, Gao S, Wu GZ, et al. Total sesquiterpene lactones isolated from Inula helenium L. attenuates 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in mice. Phytomedicine. 2018;46:78–84. doi:10.1016/j.phymed.2018.04.036
  • Wang J, Cui L, Feng L, et al. Isoalantolactone inhibits the migration and invasion of human breast cancer MDA-MB-231 cells via suppression of the p38 MAPK/NF-κB signaling pathway. Oncol Rep. 2016;36(3):1269–1276. doi:10.3892/or.2016.4954
  • Li Z, Qin B, Qi X, Mao J, Wu D. Isoalantolactone induces apoptosis in human breast cancer cells via ROS-mediated mitochondrial pathway and downregulation of SIRT1. Arch Pharm Res. 2016;39(10):1441–1453. doi:10.1007/s12272-016-0815-8
  • Fan Y, Weng Z, Gao H, et al. Isoalantolactone enhances the radiosensitivity of UMSCC-10A Cells via specific inhibition of Erk1/2 phosphorylation. PLoS One. 2015;10(12):e0145790. doi:10.1371/journal.pone.0145790
  • Li GB, Cheng Q, Liu L, et al. Mitochondrial translocation of cofilin is required for allyl isothiocyanate-mediated cell death via ROCK1/PTEN/PI3K signaling pathway. Cell Commun Signal. 2013;11:50. doi:10.1186/1478-811x-11-50
  • Chen J, Ananthanarayanan B, Springer KS, et al. Suppression of LIM kinase 1 and LIM kinase 2 limits glioblastoma invasion. Cancer Res. 2020;80(1):69–78. doi:10.1158/0008-5472.Can-19-1237
  • Zebda N, Bernard O, Bailly M, Welti S, Lawrence DS, Condeelis JS. Phosphorylation of ADF/cofilin abolishes EGF-induced actin nucleation at the leading edge and subsequent lamellipod extension. J Cell Biol. 2000;151(5):1119–1128. doi:10.1083/jcb.151.5.1119
  • Wang W, Mouneimne G, Sidani M, et al. The activity status of cofilin is directly related to invasion, intravasation, and metastasis of mammary tumors. J Cell Biol. 2006;173(3):395–404. doi:10.1083/jcb.200510115