366
Views
0
CrossRef citations to date
0
Altmetric
CASE REPORT

Neoadjuvant Radiation Therapy with Interdigitated High-Dose LRT for Voluminous High-Grade Soft-Tissue Sarcoma

, , , , , ORCID Icon & ORCID Icon show all
Pages 113-122 | Received 18 Oct 2022, Accepted 18 Jan 2023, Published online: 05 Feb 2023

References

  • National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: soft tissue sarcoma, version 1.2022; 2022.
  • Gronchi A, Miah AB, Dei Tos AP, et al; ESMO Guidelines Committee, EURACAN and GENTURIS. Soft tissue and visceral sarcomas: ESMO-EURACAN-GENTURIS clinical practice guidelines for diagnosis, treatment and follow-up☆. Ann Oncol. 2021;32(11):1348–1365. PMID: 34303806. doi:10.1016/j.annonc.2021.07.006
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30. doi:10.3322/caac.21332
  • Pisters PWT, Weiss M, Maki R. Soft-tissue sarcomas. In: Haller DG, Wagman LD, Camphausen C, Hoskins WJ, editors. Cancer Management: A Multidisciplinary Approach Medical, Surgical, & Radiation Oncology. 14 ed. UBM Medica LLC; 2011.
  • Mann GB, Lewis JJ, Brennan MF. Adult soft tissue sarcoma. Aust N Z J Surg. 1999;69:336–343. doi:10.1046/j.1440-1622.1999.01568.x
  • Rosenberg SA, Tepper J, Glatstein E, et al. The treatment of soft-tissue sarcomas of the extremities: prospective randomized evaluations of (1) limb-sparing surgery plus radiation therapy compared with amputation and (2) the role of adjuvant chemotherapy. Ann Surg. 1982;196:305–315. doi:10.1097/00000658-198209000-00009
  • Leibel SA, Tranbaugh RF, Wara WM, et al. Soft tissue sarcomas of the extremities. Survival and patterns of failure with conservative surgery and postoperative irradiation compared to surgery alone. Cancer. 1982;50(6):1076–1083. doi:10.1002/1097-0142(19820915)50:6<1076::AID-CNCR2820500610>3.0.CO;2-U
  • abbatucci JS, Boulier N, de Ranieri J, et al. Local control and survival in soft tissue sarcomas of the limbs, trunk walls and head and neck: a study of 113 cases. Int J Radiat Oncol Biol Phys. 1986;12:579–586. doi:10.1016/0360-3016(86)90066-0
  • Wilson AN, Davis A, Bell RS, et al. Local control of soft tissue sarcoma of the extremity: the experience of a multidisciplinary sarcoma group with definitive surgery and radiotherapy. Eur J Cancer. 1994;30A:746–751. doi:10.1016/0959-8049(94)90286-0
  • Fein DA, Lee WR, Lanciano RM, et al. Management of extremity soft tissue sarcomas with limb-sparing surgery and postoperative irradiation: do total dose, overall treatment time, and the surgery-radiotherapy interval impact on local control? Int J Radiat Oncol Biol Phys. 1995;32:969–976. doi:10.1016/0360-3016(95)00105-8
  • Cheng EY, Dusenbery KE, Winters MR, Thompson RC. Soft tissue sarcomas: preoperative versus postoperative radiotherapy. J Surg Oncol. 1996;61:90–9939.
  • Pisters PW, Harrison LB, Leung DH, et al. Long-term results of a prospective randomized trial of adjuvant brachytherapy in soft tissue sarcoma. J Clin Oncol. 1996;14(3):859–868. doi:10.1200/JCO.1996.14.3.859
  • Yang JC, Chang AE, Baker AR, et al. Randomized prospective study of the benefit of adjuvant radiation therapy in the treatment of soft tissue sarcomas of the extremity. J Clin Oncol. 1998;16:197–203. doi:10.1200/JCO.1998.16.1.197
  • Alektiar KM, Velasco J, Zelefsky MJ, et al. Adjuvant radiotherapy for margin-positive high-grade soft tissue sarcoma of the extremity. Int J Radiat Oncol Biol Phys. 2000;48(4):1051–1058. doi:10.1016/S0360-3016(00)00753-7
  • O’Sullivan B, Davis AM, Turcotte R, et al. Preoperative versus postoperative radiotherapy in soft-tissue sarcoma of the limbs: a randomised trial. Lancet. 2002;359(9325):2235–2241. doi:10.1016/S0140-6736(02)09292-9
  • Alektiar KM, Leung D, Zelefsky MJ, et al. Adjuvant brachytherapy for primary high-grade soft tissue sarcoma of the extremity. Ann Surg Oncol. 2002;9(1):48–56. doi:10.1245/aso.2002.9.1.48
  • O’Sullivan B, Davis A, Turcotte R, et al. Five-year results of a randomized Phase III trial of pre-operative vs post-operative radiotherapy in extremity soft tissue sarcoma [abstract]. J Clin Oncol. 2004;22(14_Suppl):Abstract9007. doi:10.1200/jco.2004.22.90140.9007
  • Davis AM, O’Sullivan B, Turcotte R, et al. Late radiation morbidity following randomization to preoperative versus postoperative radiotherapy in extremity soft tissue sarcoma. Radiother Oncol. 2005;75(1):48–53. doi:10.1016/j.radonc.2004.12.020
  • Muhic A, Hovgaard D, Mork Petersen M, et al. Local control and survival in patients with soft tissue sarcomas treated with limb sparing surgery in combination with interstitial brachytherapy and external radiation. Radiother Oncol. 2008;88(3):382–387. doi:10.1016/j.radonc.2008.06.002
  • Jebsen NL, Trovik CS, Bauer HC, et al. Radiotherapy to improve local control regardless of surgical margin and malignancy grade in extremity and trunk wall soft tissue sarcoma: a Scandinavian sarcoma group study. Int J Radiat Oncol Biol Phys. 2008;71:1196–1203. doi:10.1016/j.ijrobp.2007.11.023
  • Alektiar KM, Brennan MF, Healey JH, Singer S. Impact of intensity-modulated radiation therapy on local control in primary soft-tissue sarcoma of the extremity. J Clin Oncol. 2008;26:3440–3444. doi:10.1200/JCO.2008.16.6249
  • Kim B, Chen YL, Kirsch DG, et al. An effective preoperative three-dimensional radiotherapy target volume for extremity soft tissue sarcoma and the effect of margin width on local control. Int J Radiat Oncol Biol Phys. 2010;77:843–850. doi:10.1016/j.ijrobp.2009.06.086
  • Koshy M, Rich SE, Mohiuddin MM. Improved survival with radiation therapy in high-grade soft tissue sarcomas of the extremities: a SEER analysis. Int J Radiat Oncol Biol Phys. 2010;77(1):203–209. PMID: 19679403; PMCID: PMC3812813. doi:10.1016/j.ijrobp.2009.04.051
  • Alektiar KM, Brennan MF, Singer S. Local control comparison of adjuvant brachytherapy to intensity-modulated radiotherapy in primary high-grade sarcoma of the extremity. Cancer. 2011;117(14):3229–3234. doi:10.1002/cncr.25882
  • Beane JD, Yang JC, White D, et al. Efficacy of adjuvant radiation therapy in the treatment of soft tissue sarcoma of the extremity: 20-year follow-up of a randomized prospective trial. Ann Surg Oncol. 2014;21(8):2484–2489. doi:10.1245/s10434-014-3732-4
  • Gingrich AA, Bateni SB, Monjazeb AM, et al. Neoadjuvant radiotherapy is associated with R0 resection and improved survival for patients with extremity soft tissue sarcoma undergoing surgery: a national cancer database analysis. Ann Surg Oncol. 2017;24(11):3252–3263. doi:10.1245/s10434-017-6019-8
  • Wang D, Harris J, Kraybill W, et al. Pathologic complete response and survival outcomes in patients with localized soft tissue sarcoma treated with neoadjuvant chemoradiotherapy or radiotherapy: long-term update of NRG oncology RTOG 9514 and 0630. J Clin Oncol. 2017;35:11012. doi:10.1200/JCO.2017.35.15_suppl.11012
  • O’Sullivan B, Griffin AM, Dickie CI, et al. Phase 2 study of preoperative image-guided intensity-modulated radiation therapy to reduce wound and combined modality morbidities in lower extremity soft tissue sarcoma. Cancer. 2013;119(10):1878–1884. doi:10.1002/cncr.27951
  • Wang D, Bosch W, Roberge D, et al. RTOG sarcoma radiation oncologists reach consensus on gross tumor volume and clinical target volume on computed tomographic images for preoperative radiotherapy of primary soft tissue sarcoma of extremity in Radiation Therapy Oncology Group studies. Int J Radiat Oncol Biol Phys. 2011;81(4):e525–e528. PMCID: 3205346. doi:10.1016/j.ijrobp.2011.04.038
  • Wang D, Zhang Q, Eisenberg BL, et al. Significant reduction of late toxicities in patients with extremity sarcoma treated with image-guided radiation therapy to a reduced target volume: results of Radiation Therapy Oncology Group RTOG-0630 trial. J Clin Oncol. 2015;33(20):2231–2238. PMID: 25667281; PMCID: PMC4486342. doi:10.1200/JCO.2014.58.5828
  • Judson I, Verweij J, Gelderblom H, et al. Doxorubicin alone versus intensified doxorubicin plus ifosfamide for first-line treatment of advanced or metastatic soft-tissue sarcoma: a randomised controlled Phase 3 trial. Lancet Oncol. 2014;15:415–423. doi:10.1016/S1470-2045(14)70063-4
  • DeLaney TF, Spiro IJ, Suit HD, et al. Neoadjuvant chemotherapy and radiotherapy for large extremity soft-tissue sarcomas. Int J Radiat Oncol Biol Phys. 2003;56(4):1117–1127. PMID: 12829150. doi:10.1016/s0360-3016(03)00186-x
  • Kraybill WG, Harris J, Spiro IJ, et al. Long-term results of a phase 2 study of neoadjuvant chemotherapy and radiotherapy in the management of high-risk, high-grade, soft tissue sarcomas of the extremities and body wall: radiation Therapy Oncology Group Trial 9514. Cancer. 2010;116(19):4613–4621. PMID: 20572040; PMCID: PMC3780573. doi:10.1002/cncr.25350
  • Kraybill WG, Harris J, Spiro IJ, et al.; Radiation Therapy Oncology Group Trial 9514. Phase II study of neoadjuvant chemotherapy and radiation therapy in the management of high-risk, high-grade, soft tissue sarcomas of the extremities and body wall: radiation Therapy Oncology Group Trial 9514. J Clin Oncol. 2006;24(4):619–625. PMID: 16446334. doi:10.1200/JCO.2005.02.5577
  • Hazell SZ, Hu C, Alcorn SR, et al. Neoadjuvant chemoradiation compared with neoadjuvant radiation alone in the management of high-grade soft tissue extremity sarcomas. Adv Radiat Oncol. 2019;5(2):231–237. PMID: 32280823; PMCID: PMC7136634. doi:10.1016/j.adro.2019.08.015
  • Baldini EH, Le Cesne A, Trent JC. Neoadjuvant chemotherapy, concurrent chemoradiation, and adjuvant chemotherapy for high-risk extremity soft tissue sarcoma. Am Soc Clin Oncol Educ Book. 2018;38(38):910–915. PMID: 30231383. doi:10.1200/EDBK_201421
  • Dancsok AR, Asleh-Aburaya K, Nielsen TO. Advances in sarcoma diagnostics and treatment. Oncotarget. 2017;8(4):7068–7093. PMID: 27732970; PMCID: PMC5351692. doi:10.18632/oncotarget.12548
  • Eilber FC, Rosen G, Eckardt J, et al. Treatment-induced pathologic necrosis: a predictor of local recurrence and survival in patients receiving neoadjuvant therapy for high-grade extremity soft tissue sarcomas. J Clin Oncol. 2001;19(13):3203–3209. PubMed: 11432887. doi:10.1200/JCO.2001.19.13.3203
  • MacDermed DM, Miller LL, Peabody TD, et al. Primary tumor necrosis predicts distant control in locally advanced soft-tissue sarcomas after preoperative concurrent chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2010;76(4):1147–1153. PMID: 19577863; PMCID: PMC2931332. doi:10.1016/j.ijrobp.2009.03.015
  • Bonvalot S, Wunder J, Gronchi A, et al. Complete pathological response to neoadjuvant treatment is associated with better survival outcomes in patients with soft tissue sarcoma: results of a retrospective multicenter study. Eur J Surg Oncol. 2021;47(8):2166–2172. PMID: 33676792. doi:10.1016/j.ejso.2021.02.024
  • Choong PF, Nizam I, Ngan SY, et al. Thallium-201 scintigraphy--a predictor of tumour necrosis in soft tissue sarcoma following preoperative radiotherapy? Eur J Surg Oncol. 2003;29(10):908–915. PMID: 14624787. doi:10.1016/j.ejso.2003.09.003
  • Snider JW, Molitoris J, Shyu S, et al. Spatially Fractionated Radiotherapy (GRID) prior to standard neoadjuvant conventionally fractionated radiotherapy for bulky, high-risk soft tissue and osteosarcomas: feasibility, safety, and promising pathologic response rates. Radiat Res. 2020;194(6):707–714. PMID: 33064802. doi:10.1667/RADE-20-00100.1
  • Laissue JA, Blattmann H, Slatkin DN. Alban Köhler (1874-1947): Erfinder der Gittertherapie [Alban Köhler (1874–1947): inventor of grid therapy]. Z Med Phys. 2012;22(2):90–99. German.
  • Liberson F. The value of a multi-perforated screen in deep X-ray therapy: a preliminary report on a new method of delivering multiple erythema doses without permanent injury to the skin. Radiology. 1933;30(3):186–195.
  • Marks H. A new approach to the roentgen therapy of cancer with the use of a grid. J Mt Sinai Hosp N Y. 1950;17(1):46–48.
  • Marks H. Clinical experience with irradiation through a grid. Radiology. 1952;58(3):338–342. doi:10.1148/58.3.338
  • Mohiuddin M, Curtis DL, Grizos WT, Komarnicky L. Palliative treatment of advanced cancer using multiple nonconfluent pencil beam radiation. A pilot study. Cancer. 1990;66(1):114–118.
  • Mohiuddin M, Stevens JH, Reiff JE, Huq MS, Suntharahgam N. Spatially fractionated (GRID) radiation for palliative treatment of advanced cancer. Radiat Oncol Investig. 1996;4:41–47. doi:10.1002/(SICI)1520-6823(1996)4:1<41::AID-ROI7>3.0.CO;2-M
  • Mohiuddin M, Fujita M, Regine WF, Megooni AS, Ibbott GS, Ahmed MM. High-dose spatially-fractionated radiation (GRID): a new paradigm in the management of advanced cancers. Int J Radiat Oncol Biol Phys. 1999;45(3):721–727. doi:10.1016/S0360-3016(99)00170-4
  • Kudrimoti M, Regine WF, Huhn JL, Meigooni AS, Ahmed M, Mohiuddin M. Spatially fractionated radiation therapy (SFR) in the palliation of large bulky (>8 cm) melanomas (abstr). Int J Radiat Oncol Biol Phys. 2002;54:342–343. doi:10.1016/S0360-3016(02)03646-5
  • Huhn JL, Regine WF, Valentino JP, Meigooni AS, Kudrimoti M, Mohiuddin M. Spatially fractionated GRID radiation treatment of advanced neck disease associated with head and neck cancer. Technol Cancer Res Treat. 2006;5(6):607–612. doi:10.1177/153303460600500608
  • Zhang H, Wang JZ, Mayr N, et al. Fractionated grid therapy in treating cervical cancers: conventional fractionation or hypofractionation? Int J Radiat Oncol Biol Phys. 2008;70(1):280–813. doi:10.1016/j.ijrobp.2007.08.024
  • Peñagarícano JA, Griffin R, Corry P, Moros E, Yan Y, Ratanatharathorn V. Spatially fractionated (GRID) therapy for large and bulky tumors. J Ark Med Soc. 2009;105(11):263–265.
  • Penagaricano JA, Moros EG, Ratanatharathorn V, Yan Y, Corry P. Evaluation of spatially fractionated radiotherapy (GRID) and definitive chemoradiotherapy with curative intent for locally advanced squamous cell carcinoma of the head and neck: initial response rates and toxicity. Int J Radiat Oncol Biol Phys. 2010;76(5):1369–1375. doi:10.1016/j.ijrobp.2009.03.030
  • Neuner G, Mohiuddin MM, Vander Walde N, et al. High-dose spatially fractionated GRID radiation therapy (SFGRT): a comparison of treatment outcomes with cerrobend vs. MLC SFGRT. Int J Radiat Oncol Biol Phys. 2012;82(5):1642–1649. doi:10.1016/j.ijrobp.2011.01.065
  • Mohiuddin M, Park H, Hallmeyer S, Richards J. High-dose radiation as a dramatic, immunological primer in locally advanced melanoma. Cureus. 2015;7(12):e417. doi:10.7759/cureus.417
  • Billena C, Khan AJ, Current A. Review of spatial fractionation: back to the future? Int J Radiat Oncol Biol Phys. 2019;104(1):177–187. doi:10.1016/j.ijrobp.2019.01.073
  • Yan W, Khan MK, Wu X, et al. Spatially fractionated radiation therapy: history, present and the future. Clin Transl Radiat Oncol. 2019;20:30–38. PMID: 31768424; PMCID: PMC6872856. doi:10.1016/j.ctro.2019.10.004
  • Zhang H, Wu X, Zhang X, et al. Photon GRID radiation therapy: a physics and dosimetry white paper from the Radiosurgery Society (RSS) GRID/LATTICE, microbeam and FLASH Radiotherapy Working Group. Radiat Res. 2020;194(6):665–677. PMID: 33348375. doi:10.1667/RADE-20-00047.1
  • Griffin RJ, Ahmed MM, Amendola B, et al. Understanding high-dose, ultra-high dose rate, and spatially fractionated radiation therapy. Int J Radiat Oncol Biol Phys. 2020;107(4):766–778. doi:10.1016/j.ijrobp.2020.03.028
  • Chakravarty PK, Alfieri A, Thomas EK, et al. Flt3-ligand administration after radiation therapy prolongs survival in a murine model of metastatic lung cancer. Cancer Res. 1999;59(24):6028–6032.
  • Sathishkumar S, Dey S, Meigooni AS, et al. The impact of TNF-alpha induction on therapeutic efficacy following high dose spatially fractionated (GRID) radiation. Technol Cancer Res Treat. 2002;1(2):141–147. doi:10.1177/153303460200100207
  • Sathishkumar S, Boyanovsky B, Karakashian AA, et al. Elevated sphingomyelinase activity and ceramide concentration in serum of patients undergoing high dose spatially fractionated radiation treatment: implications for endothelial apoptosis. Cancer Biol Ther. 2005;4(9):979–986. doi:10.4161/cbt.4.9.1915
  • Peters ME, Shareef MM, Gupta S, et al. Potential utilization of bystander/abscopal-mediated signal transduction events in the treatment of solid tumors. Curr Signal Transduct Ther. 2007;2(2):129–143. doi:10.2174/157436207780619509
  • Shareef MM, Cui N, Burikhanov R, et al. Role of tumor necrosis factor-alpha and TRAIL in high-dose radiation-induced bystander signaling in lung adenocarcinoma. Cancer Res. 2007;67(24):11811–11820. doi:10.1158/0008-5472.CAN-07-0722
  • Formenti SC, Demaria S. Systemic effects of local radiotherapy. Lancet Oncol. 2009;10:718–726. doi:10.1016/S1470-2045(09)70082-8
  • Ahmed MM, Hodge JW, Guha C, Bernhard EJ, Vikram B, Coleman CN. Harnessing the potential of radiation-induced immune modulation for cancer therapy. Cancer Immunol Res. 2013;1(5):280–284. doi:10.1158/2326-6066.CIR-13-0141
  • Kanagavelu S, Gupta S, Wu X, et al. In vivo effects of lattice radiation therapy on local and distant lung cancer: potential role of immunomodulation. Radiat Res. 2014;182(2):149–162. doi:10.1667/RR3819.1
  • Asur R, Butterworth KT, Penagaricano JA, Prise KM, Griffin RJ. High dose bystander effects in spatially fractionated radiation therapy. Cancer Lett. 2015;356(1):52–57. doi:10.1016/j.canlet.2013.10.032
  • Filatenkov A, Baker J, Mueller AM, et al. Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions. Clin Cancer Res. 2015;21:3727–3739. doi:10.1158/1078-0432.CCR-14-2824
  • Wennerberg E, Lhuillier C, Vanpouille-Box C, et al. Barriers to radiation-induced in situ tumor vaccination. Front Immunol. 2017;8:229. doi:10.3389/fimmu.2017.00229
  • Buchwald ZS, Wynne J, Nasti TH, et al. Radiation, immune checkpoint blockade and the abscopal effect: a critical review on timing, dose and fractionation. Front Oncol. 2018;8:612. doi:10.3389/fonc.2018.00612
  • Rodriguez-Ruiz ME, Vanpouille-Box C, Melero I, Formenti SC, Demaria S. Immunological mechanisms responsible for radiation-induced abscopal effect. Trends Immunol. 2018;39(8):644–655. doi:10.1016/j.it.2018.06.001
  • Markovsky E, Budhu S, Samstein RM, et al. An antitumor immune response is evoked by partial-volume single-dose radiation in 2 murine models. Int J Radiat Oncol Biol Phys. 2019;103(3):697–708. doi:10.1016/j.ijrobp.2018.10.009
  • Wu X, Ahmed MM, Wright J, Gupta S, Pollack A. On modern technical approaches of three-dimensional high-dose Lattice radiotherapy (LRT). Cureus. 2010;2(3):e9.
  • Wu X, Perez NC, Zheng Y, et al. The technical and clinical implementation of LATTICE Radiation Therapy (LRT). Radiat Res. 2020;194:737–746. doi:10.1667/RADE-20-00066.1
  • Amendola B, Perez N, Amendola MA, et al. Lattice radiotherapy with RapidArc for treatment of gynecological tumors: dosimetric and early clinical evaluations. Cureus. 2010;2(9):e15. doi:10.7759/cureus.15
  • Blanco Suarez JM, Amendola BE, Perez NC, Amendola M, Wu X. The use of Lattice Radiation Therapy (LRT) in the treatment of bulky tumors: a case report of a large metastatic mixed mullerian ovarian tumor. Cureus. 2015;7(11):e389. doi:10.7759/cureus.389
  • Amendola BE, Perez NC, Wu X, Blanco Suarez JM, Lu JJ, Amendola M. Improved outcome of treating locally advanced lung cancer with the use of Lattice Radiotherapy (LRT): a case report. Clin Transl Radiat Oncol. 2018;9:68–71. doi:10.1016/j.ctro.2018.01.003
  • Amendola BE, Perez NC, Wu X, Amendola MA, Qureshi IZ. Safety and efficacy of lattice radiotherapy in voluminous non-small cell lung cancer. Cureus. 2019;11(3):e4263. doi:10.7759/cureus.4263
  • Amendola BE, Perez NC, Mayr NA, Wu X, Amendola M. Spatially fractionated radiation therapy using lattice radiation in far-advanced bulky cervical cancer: a clinical and molecular imaging and outcome study. Radiat Res. 2020;194:724–736. doi:10.1667/RADE-20-00038.1
  • Pollack A, Chinea FM, Bossart E, et al. Phase I trial of MRI-guided prostate cancer Lattice Extreme Ablative Dose (LEAD) boost radiation therapy. Int J Radiat Oncol Biol Phys. 2020;107(2):305–315. Erratum in: Int J Radiat Oncol Biol Phys. 2020 Sep 1;108(1):328. PMID: 32084522; PMCID: PMC7424349. doi:10.1016/j.ijrobp.2020.01.052
  • Jiang L, Li X, Zhang J, et al. Combined high-dose LATTICE radiation therapy and immune checkpoint blockade for advanced bulky tumors: the concept and a case report. Front Oncol. 2021;10:548132. PMID: 33643893; PMCID: PMC7907519. doi:10.3389/fonc.2020.548132
  • Duriseti S, Kavanaugh JA, Szymanski J, et al. LITE SABR M1: a phase I trial of lattice stereotactic body radiotherapy for large tumors. Radiother Oncol. 2022;167:317–322. PMID: 34875286. doi:10.1016/j.radonc.2021.11.023
  • Dincer N, Ugurluer G, Korkmaz L, et al. Magnetic resonance imaging-guided online adaptive lattice stereotactic body radiotherapy in voluminous liver metastasis: two case reports. Cureus. 2022;14(4):e23980. PMID: 35541303; PMCID: PMC9084247. doi:10.7759/cureus.23980
  • Tubin S, Gupta S, Grusch M, et al. Shifting the immune-suppressive to predominant immune-stimulatory radiation effects by SBRT-PArtial Tumor Irradiation Targeting HYpoxic segment (SBRT-PATHY). Cancers. 2020;13(1):50. PMID: 33375357; PMCID: PMC7795882. doi:10.3390/cancers13010050
  • Spałek MJ. Lattice radiotherapy: hype or hope? Ann Palliat Med. 2022;11(11):3378–3381. PMID: 36267011. doi:10.21037/apm-22-1081
  • Wu X. Spatial-temporal modulation in radiation therapy. Precis Radiat Oncol. 2022;1–3. doi:10.1002/pro6.1174
  • Spałek MJ, Kozak K, Czarnecka AM, Bartnik E, Borkowska A, Rutkowski P. Neoadjuvant treatment options in soft tissue sarcomas. Cancers. 2020;12(8):2061. PMID: 32722580; PMCID: PMC7464514. doi:10.3390/cancers12082061
  • Spałek MJ, Borkowska AM, Telejko M, et al. The feasibility study of hypofractionated radiotherapy with regional hyperthermia in soft tissue sarcomas. Cancers. 2021;13(6):1332. PMID: 33809547; PMCID: PMC8000962. doi:10.3390/cancers13061332
  • Spałek MJ, Koseła-Paterczyk H, Borkowska A, et al. Combined preoperative hypofractionated radiotherapy with doxorubicin-ifosfamide chemotherapy in marginally resectable soft tissue sarcomas: results of a phase 2 clinical trial. Int J Radiat Oncol Biol Phys. 2021;110(4):1053–1063. PMID: 33600887. doi:10.1016/j.ijrobp.2021.02.019