156
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Development and Validation of a Novel Diagnostic Nomogram Model Using Serum Oxidative Stress Markers and AURKA for Prediction of Nasopharyngeal Carcinoma

ORCID Icon, , &
Pages 1053-1062 | Received 23 Dec 2022, Accepted 08 Sep 2023, Published online: 27 Sep 2023

References

  • Chen YP, Chan ATC, Le QT, Blanchard P, Sun Y, Ma J. Nasopharyngeal carcinoma. Lancet. 2019;394(10192):64–80. doi:10.1016/S0140-6736(19)30956-0
  • Zhou X, Cao SM, Cai YL, et al. A comprehensive risk score for effective risk stratification and screening of nasopharyngeal carcinoma. Nat Commun. 2021;12(1):5189. doi:10.1038/s41467-021-25402-z
  • Bansal A, Simon MC. Glutathione metabolism in cancer progression and treatment resistance. J Cell Biol. 2018;217(7):2291–2298. doi:10.1083/jcb.201804161
  • Mazzuferi G, Bacchetti T, Islam MO, Ferretti G. High density lipoproteins and oxidative stress in breast cancer. Lipids Health Dis. 2021;20(1):143. doi:10.1186/s12944-021-01562-1
  • Braga-Neto MB, Costa DVS, Queiroz DMM, et al. Increased oxidative stress in gastric cancer patients and their first-degree relatives: a prospective study from Northeastern Brazil. Oxid Med Cell Longev. 2021;2021:6657434. doi:10.1155/2021/6657434
  • Wu Z, Huang H, Han Q, et al. SENP7 senses oxidative stress to sustain metabolic fitness and antitumor functions of CD8+ T cells. J Clin Invest. 2022;132(7). doi:10.1172/JCI155224
  • Wigner P, Szymanska B, Bijak M, et al. Oxidative stress parameters as biomarkers of bladder cancer development and progression. Sci Rep. 2021;11(1):15134. doi:10.1038/s41598-021-94729-w
  • Bilgin E, Atli G, Duman BB, Okten AI. Evaluation of oxidative stress biomarkers in brain metastatic and non-metastatic lung cancer patients with different cell types. Anticancer Agents Med Chem. 2021;21(15):2032–2040. doi:10.2174/1871520621666210211163055
  • Niu B, Liao K, Zhou Y, et al. Application of glutathione depletion in cancer therapy: enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials. 2021;277:121110. doi:10.1016/j.biomaterials.2021.121110
  • Pakfetrat A, Dalirsani Z, Hashemy SI, et al. Evaluation of serum levels of oxidized and reduced glutathione and total antioxidant capacity in patients with head and neck squamous cell carcinoma. J Cancer Res Ther. 2018;14(2):428–431. doi:10.4103/0973-1482.189229
  • Xue N, Zhou R, Deng M, et al. High serum superoxide dismutase activity improves radiation-related quality of life in patients with esophageal squamous cell carcinoma. Clinics. 2021;76:e2226. doi:10.6061/clinics/2021/e2226
  • Perluigi M, Coccia R, Butterfield DA. 4-Hydroxy-2-nonenal, a reactive product of lipid peroxidation, and neurodegenerative diseases: a toxic combination illuminated by redox proteomics studies. Antioxid Redox Signal. 2012;17(11):1590–1609. doi:10.1089/ars.2011.4406
  • Wang YK, Chiang WC, Kuo FC, et al. Levels of malondialdehyde in the gastric juice: its association with Helicobacter pylori infection and stomach diseases. Helicobacter. 2018;23(2):e12460. doi:10.1111/hel.12460
  • Zińczuk J, Maciejczyk M, Zaręba K, et al. Antioxidant barrier, redox status, and oxidative damage to biomolecules in patients with colorectal cancer. can malondialdehyde and catalase be markers of colorectal cancer advancement? Biomolecules. 2019;9(10):637. doi:10.3390/biom9100637
  • Dillioglugil MO, Mekık H, Muezzinoglu B, Ozkan TA, Demir CG, Dillioglugil O. Blood and tissue nitric oxide and malondialdehyde are prognostic indicators of localized prostate cancer. Int Urol Nephrol. 2012;44(6):1691–1696. doi:10.1007/s11255-012-0221-1
  • Kaynar H, Meral M, Turhan H, Keles M, Celik G, Akcay F. Glutathione peroxidase, glutathione-S-transferase, catalase, xanthine oxidase, Cu-Zn superoxide dismutase activities, total glutathione, nitric oxide, and malondialdehyde levels in erythrocytes of patients with small cell and non-small cell lung cancer. Cancer Lett. 2005;227(2):133–139. doi:10.1016/j.canlet.2004.12.005
  • Gargouri B, Lassoued S, Ben Mansour R, et al. High levels of autoantibodies against catalase and superoxide dismutase in nasopharyngeal carcinoma. South Med J. 2009;102(12):1222–1226. doi:10.1097/SMJ.0b013e3181bb85b5
  • Gargouri B, Lassoued S, Ayadi W, et al. Lipid peroxidation and antioxidant system in the tumor and in the blood of patients with nasopharyngeal carcinoma. Biol Trace Elem Res. 2009;132(1–3):27–34. doi:10.1007/s12011-009-8384-z
  • Bozan N, Demir H, Gursoy T, et al. Alterations in oxidative stress markers in laryngeal carcinoma patients. J Chin Med Assoc. 2018;81(9):811–815. doi:10.1016/j.jcma.2018.02.004
  • Dawei H, Honggang D, Qian W. AURKA contributes to the progression of oral squamous cell carcinoma (OSCC) through modulating epithelial-to-mesenchymal transition (EMT) and apoptosis via the regulation of ROS. Biochem Biophys Res Commun. 2018;507(1–4):83–90. doi:10.1016/j.bbrc.2018.10.170
  • Mehra R, Serebriiskii IG, Burtness B, Astsaturov I, Golemis EA. Aurora kinases in head and neck cancer. Lancet Oncol. 2013;14(10):e425–e435. doi:10.1016/S1470-2045(13)70128-1
  • Huang C, Chen L, Zhang Y, et al. Predicting AURKA as a novel therapeutic target for NPC: a comprehensive analysis based on bioinformatics and validation. Front Genet. 2022;13:926546. doi:10.3389/fgene.2022.926546
  • Du R, Huang C, Liu K, Li X, Dong Z. Targeting AURKA in Cancer: molecular mechanisms and opportunities for Cancer therapy. Mol Cancer. 2021;20(1):15. doi:10.1186/s12943-020-01305-3
  • Katsha A, Soutto M, Sehdev V, et al. Aurora kinase A promotes inflammation and tumorigenesis in mice and human gastric neoplasia. Gastroenterology. 2013;145(6):1312–1322 e1311–1318. doi:10.1053/j.gastro.2013.08.050
  • Skorska KB, Placzkowska S, Prescha A, et al. Serum total SOD activity and SOD1/2 concentrations in predicting all-cause mortality in lung cancer patients. Pharmaceuticals. 2021;14(11):1067. doi:10.3390/ph14111067
  • Strycharz-Dudziak M, Foltyn S, Dworzanski J, et al. Glutathione Peroxidase (GPx) and Superoxide Dismutase (SOD) in oropharyngeal cancer associated with EBV and HPV coinfection. Viruses. 2020;12(9):1008. doi:10.3390/v12091008
  • Liu Q, Ding X, Xu X, et al. Tumor-targeted hyaluronic acid-based oxidative stress nanoamplifier with ROS generation and GSH depletion for antitumor therapy. Int J Biol Macromol. 2022;207:771–783. doi:10.1016/j.ijbiomac.2022.03.139
  • Verlaet AAJ, Breynaert A, Ceulemans B, et al. Oxidative stress and immune aberrancies in attention-deficit/hyperactivity disorder (ADHD): a case-control comparison. Eur Child Adolesc Psychiatry. 2019;28(5):719–729. doi:10.1007/s00787-018-1239-4
  • Wu Q, Shang Y, Shen T, Liu F, Zhang W. Biochanin A protects SH-SY5Y cells against isoflurane-induced neurotoxicity by suppressing oxidative stress and apoptosis. Neurotoxicology. 2021;86:10–18. doi:10.1016/j.neuro.2021.06.007
  • Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 2021;20(9):689–709. doi:10.1038/s41573-021-00233-1
  • Wu J, Ning P, Gao R, et al. Programmable ROS-mediated cancer therapy via magneto-inductions. Adv Sci. 2020;7(12):1902933. doi:10.1002/advs.201902933
  • Gomaa A, Peng D, Chen Z, et al. Epigenetic regulation of AURKA by miR-4715-3p in upper gastrointestinal cancers. Sci Rep. 2019;9(1):16970. doi:10.1038/s41598-019-53174-6
  • Xie Y, Zhu S, Zhong M, et al. Inhibition of Aurora Kinase A induces necroptosis in pancreatic carcinoma. Gastroenterology. 2017;153(5):1429–1443 e1425. doi:10.1053/j.gastro.2017.07.036
  • Wang-Bishop L, Chen Z, Gomaa A, et al. Inhibition of AURKA reduces proliferation and survival of gastrointestinal cancer cells with activated KRAS by preventing activation of RPS6KB1. Gastroenterology. 2019;156(3):662–675 e667. doi:10.1053/j.gastro.2018.10.030
  • Peng F, Xu J, Cui B, et al. Oncogenic AURKA-enhanced N(6)-methyladenosine modification increases DROSHA mRNA stability to transactivate STC1 in breast cancer stem-like cells. Cell Res. 2021;31(3):345–361. doi:10.1038/s41422-020-00397-2
  • Sun H, Wang H, Wang X, et al. Aurora-A/SOX8/FOXK1 signaling axis promotes chemoresistance via suppression of cell senescence and induction of glucose metabolism in ovarian cancer organoids and cells. Theranostics. 2020;10(15):6928–6945. doi:10.7150/thno.43811
  • Wang GF, Dong Q, Bai Y, et al. Oxidative stress induces mitotic arrest by inhibiting Aurora A-involved mitotic spindle formation. Free Radic Biol Med. 2017;103:177–187. doi:10.1016/j.freeradbiomed.2016.12.031
  • Huang Y, Pepe MS. Assessing risk prediction models in case-control studies using semiparametric and nonparametric methods. Stat Med. 2010;29(13):1391–1410. doi:10.1002/sim.3876