48
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Anticancer Effects of Wild Baicalin on Hepatocellular Carcinoma: Downregulation of AKR1B10 and PI3K/AKT Signaling Pathways

, , , , , & show all
Pages 477-489 | Received 05 Jan 2024, Accepted 09 May 2024, Published online: 23 May 2024

References

  • Liu W, Cheng Y, Liu Z, et al. Preoperative prediction of Ki-67 status in breast cancer with multiparametric MRI using transfer learning. Acad Radiol. 2021;28(2):e44–e53. doi:10.1016/j.acra.2020.02.006
  • Zheng W, Jiang F, Shan J, et al. Levels of serum IgG subclasses in patients with liver disease: a retrospective study. Exp Ther Med. 2021;21(1):1. doi:10.3892/etm.2020.9433
  • Yoneda N, Matsui O, Kobayashi S, et al. Current status of imaging biomarkers predicting the biological nature of hepatocellular carcinoma. Jap J Radiol. 2019;37:191–208. doi:10.1007/s11604-019-00817-3
  • Shi Y, Wang Y, Yang R, et al. Glycosylation-related molecular subtypes and risk score of hepatocellular carcinoma: novel insights to clinical decision-making. Front Endocrinol. 2022;13:1090324. doi:10.3389/fendo.2022.1090324
  • de Visser KE, Joyce JA. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell. 2023;41(3):374–403. doi:10.1016/j.ccell.2023.02.016
  • Song D-G, Lee J-Y, Lee E-H, et al. Inhibitory effects of polyphenols isolated from Rhus verniciflua on Aldo-keto reductase family 1 B10. BMB Rep. 2010;43(4):268–272. doi:10.5483/BMBRep.2010.43.4.268
  • Kim SY, Shen Q, Son K, et al. SMARCA4 oncogenic potential via IRAK1 enhancer to activate Gankyrin and AKR1B10 in liver cancer. Oncogene. 2021;40(28):4652–4662. doi:10.1038/s41388-021-01875-6
  • Wang -Y-Y, L-N Q, Zhong J-H, et al. High expression of AKR1B10 predicts low risk of early tumor recurrence in patients with hepatitis B virus-related hepatocellular carcinoma. Sci Rep. 2017;7(1):42199. doi:10.1038/srep42199
  • Miricescu D, Totan A, Stanescu-Spinu -I-I, Badoiu SC, Stefani C, Greabu M. PI3K/AKT/mTOR signaling pathway in breast cancer: from molecular landscape to clinical aspects. Int J Mol Sci. 2020;22(1):173. doi:10.3390/ijms22010173
  • Tewari D, Patni P, Bishayee A, Sah AN, Bishayee A. Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: a novel therapeutic strategy. In: Seminars in Cancer Biology. Elsevier; 2022.
  • Iida M, Harari P, Wheeler D, Toulany M. Targeting AKT/PKB to improve treatment outcomes for solid tumors. Mutat Res. 2020;819:111690. doi:10.1016/j.mrfmmm.2020.111690
  • Jiang N, Dai Q, Su X, Fu J, Feng X, Peng J. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol Biol Rep. 2020;47(6):4587–4629. doi:10.1007/s11033-020-05435-1
  • Rascio F, Spadaccino F, Rocchetti MT, et al. The pathogenic role of PI3K/AKT pathway in cancer onset and drug resistance: an updated review. Cancers. 2021;13(16):3949. doi:10.3390/cancers13163949
  • DiStefano JK, Davis B. Diagnostic and prognostic potential of AKR1B10 in human hepatocellular carcinoma. Cancers. 2019;11(4):486. doi:10.3390/cancers11040486
  • Huang C, Cao Z, Ma J, et al. AKR1B10 activates diacylglycerol (DAG) second messenger in breast cancer cells. Molecular Carcinog. 2018;57(10):1300–1310. doi:10.1002/mc.22844
  • Qu J, Li J, Zhang Y, et al. AKR1B10 promotes breast cancer cell proliferation and migration via the PI3K/AKT/NF-κB signaling pathway. Cell Biosci. 2021;11(1):1–13. doi:10.1186/s13578-021-00677-3
  • Li X, Wang C-Y. From bulk, single-cell to spatial RNA sequencing. Int J Oral Sci. 2021;13(1):36. doi:10.1038/s41368-021-00146-0
  • Saeidian AH, Youssefian L, Vahidnezhad H, Uitto J. Research techniques made simple: whole-transcriptome sequencing by RNA-seq for diagnosis of monogenic disorders. J Invest Dermatol. 2020;140(6):1117–26. e1. doi:10.1016/j.jid.2020.02.032
  • Xiao W, Ren L, Chen Z, et al. Toward best practice in cancer mutation detection with whole-genome and whole-exome sequencing. Nature Biotechnol. 2021;39(9):1141–1150. doi:10.1038/s41587-021-00994-5
  • Chen JG, Zhang SW. Liver Cancer Epidemic in China: Past, Present and Future. Seminars in Cancer Biology. Elsevier; 2011.
  • Li K, Xiao K, Zhu S, Wang Y, Wang W. Chinese herbal medicine for primary liver cancer therapy: perspectives and challenges. Front Pharmacol. 2022;13:889799. doi:10.3389/fphar.2022.889799
  • Mohammad RM, Muqbil I, Lowe L, et al. Broad targeting of resistance to apoptosis in cancer. In: Seminars in Cancer Biology. Elsevier; 2015.
  • Morana O, Wood W, Gregory CD. The apoptosis paradox in cancer. Int J Mol Sci. 2022;23(3):1328. doi:10.3390/ijms23031328
  • Deng W, Han W, Fan T, et al. Scutellarin inhibits human renal cancer cell proliferation and migration via upregulation of PTEN. Biomed Pharmacother. 2018;107:1505–1513. doi:10.1016/j.biopha.2018.08.127
  • Yang N, Zhao Y, Wang Z, Liu Y, Zhang Y. Scutellarin suppresses growth and causes apoptosis of human colorectal cancer cells by regulating the p53 pathway. Mole Med Rep. 2017;15(2):929–935. doi:10.3892/mmr.2016.6081
  • Zhou Z, Zhao Y, Gu L, Niu X, Lu S. Inhibiting proliferation and migration of lung cancer using small interfering RNA targeting on Aldo-keto reductase family 1 member B10. Molec Med Rep. 2018;17(2):2153–2160. doi:10.3892/mmr.2017.8173
  • Endo S, Hu D, Suyama M, et al. Synthesis and structure–activity relationship of 2-phenyliminochromene derivatives as inhibitors for aldo–keto reductase (AKR) 1B10. Bioorg Med Chem. 2013;21(21):6378–6384. doi:10.1016/j.bmc.2013.08.059
  • Jumper N, Hodgkinson T, Arscott G, Har-Shai Y, Paus R, Bayat A. The aldo-keto reductase AKR1B10 is up-regulated in keloid epidermis, implicating retinoic acid pathway dysregulation in the pathogenesis of keloid disease. J Invest Dermatol. 2016;136(7):1500–1512. doi:10.1016/j.jid.2016.03.022
  • Kibria G, Hatakeyama H, Harashima H. Cancer multidrug resistance: mechanisms involved and strategies for circumvention using a drug delivery system. Arch Pharmacal Res. 2014;37:4–15. doi:10.1007/s12272-013-0276-2