703
Views
6
CrossRef citations to date
0
Altmetric
Review

Food Pyramid for Subjects with Chronic Obstructive Pulmonary Diseases

, , ORCID Icon, ORCID Icon, , , , ORCID Icon, & ORCID Icon show all
Pages 1435-1448 | Published online: 19 Jun 2020

References

  • WillettWC, SacksF, TrichopoulouA, et al. Mediterranean diet pyramid: a cultural model for healthy eating. Am J Clin Nutr. 1995;61(6):1402S–1406S. doi:10.1093/ajcn/61.6.1402S7754995
  • TabakC, SmitHA, HeederikD, OckéMC, KromhoutD. Diet and chronic obstructive pulmonary disease: independent beneficial effects of fruits, whole grains, and alcohol (the MORGEN study). Clin Exp Allergy. 2001;31(5):747–755. doi:10.1046/j.1365-2222.2001.01064.x.11422134
  • VarrasoR, FungTT, BarrRG, HuFB, WillettW, CamargoCA. Prospective study of dietary patterns and chronic obstructive pulmonary disease among US women. Am J Clin Nutr. 2007;86(2):488–495. doi:10.1093/ajcn/86.2.48817684223
  • VarrasoR, KauffmannF, LeynaertB, et al. Dietary patterns and asthma in the E3N study. Eur Respir J. 2009;33(1):33–41. doi:10.1183/09031936.0013080718829673
  • VarrasoR, ChiuveSE, FungTT, et al. Alternate Healthy Eating Index 2010 and risk of chronic obstructive pulmonary disease among US women and men: prospective study. BMJ. 2015;350(feb03 7):h286–h286. doi:10.1136/bmj.h28625649042
  • WoodLG, GargML, GibsonPG. A high-fat challenge increases airway inflammation and impairs bronchodilator recovery in asthma. J Allergy Clin Immunol. 2011;127(5):1133–1140. doi:10.1016/j.jaci.2011.01.03621377715
  • BerthonBS, WoodLG. Nutrition and respiratory health—feature review. Nutrients. 2015;7(3):1618–1643. doi:10.3390/nu703161825751820
  • McKeeverTM, LewisSA, CassanoPA, et al. Patterns of dietary intake and relation to respiratory disease, forced expiratory volume in 1 s, and decline in 5-y forced expiratory volume. Am J Clin Nutr. 2010;92(2):408–415. doi:10.3945/ajcn.2009.2902120554789
  • LandboC, PrescottE, LangeP, VestboJ, AlmdalTP. Prognostic value of nutritional status in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;160(6):1856–1861. doi:10.1164/ajrccm.160.6.990211510588597
  • HallinR, GudmundssonG, Suppli UlrikC, et al. Nutritional status and long-term mortality in hospitalised patients with chronic obstructive pulmonary disease (COPD). Respir Med. 2007;101(9):1954–1960. doi:10.1016/j.rmed.2007.04.00917532198
  • CaoC, WangR, WangJ, BunjhooH, XuY, XiongW. Body mass index and mortality in chronic obstructive pulmonary disease: a meta-analysis. simpson C, ed. PLoS One. 2012;7(8):e43892. doi:10.1371/journal.pone.004389222937118
  • CelliBR, CoteCG, MarinJM, et al. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med. 2004;350(10):1005–1012. doi:10.1056/NEJMoa02132214999112
  • EisnerMD, BlancPD, SidneyS, et al. Body composition and functional limitation in COPD. Respir Res. 2007;8(1):7. doi:10.1186/1465-9921-8-717261190
  • Montes de OcaM, TálamoC, Perez-PadillaR, et al. Chronic obstructive pulmonary disease and body mass index in five Latin America cities: the PLATINO study. Respir Med. 2008;102(5):642–650. doi:10.1016/j.rmed.2007.12.02518314321
  • LainscakM, von HaehlingS, DoehnerW, et al. Body mass index and prognosis in patients hospitalized with acute exacerbation of chronic obstructive pulmonary disease. J Cachexia Sarcopenia Muscle. 2011;2(2):81–86. doi:10.1007/s13539-011-0023-921766053
  • ScholsAM, BroekhuizenR, Weling-ScheepersCA, WoutersEF. Body composition and mortality in chronic obstructive pulmonary disease. Am J Clin Nutr. 2005;82(1):53–59. doi:10.1093/ajcn.82.1.5316002800
  • ScholsAM, FerreiraIM, FranssenFM, et al. Nutritional assessment and therapy in COPD: A European respiratory society statement. Eur Respir J. 2014;44(6):1504–1520. doi:10.1183/09031936.0007091425234804
  • FilleyGF, BeckwittHJ, ReevesJT, MitchellRS. Chronic obstructive bronchopulmonary disease. II. Oxygen transport in two clinical types. Am J Med. 1968;44(1):26–38. doi:10.1016/0002-9343(68)90234-95635286
  • NguyenHT, CollinsPF, PaveyTG, NguyenNV, PhamTD, GallegosDL. Nutritional status, dietary intake, and health-related quality of life in outpatients with COPD. Int J Chron Obstruct Pulmon Dis. 2019;14:215–226. doi:10.2147/COPD.S18132230666102
  • RemelsAHV, GoskerHR, LangenRCJ, ScholsAMWJ. The mechanisms of cachexia underlying muscle dysfunction in COPD. J Appl Physiol. 2013;114(9):1253–1262. doi:10.1152/japplphysiol.00790.201223019314
  • SteutenLMG, CreutzbergEC, VrijhoefHJM, WoutersEF. COPD as a multicomponent disease: inventory of dyspnoea, underweight, obesity and fat free mass depletion in primary care. Prim Care Respir J. 2006;15(2):84–91. doi:10.1016/j.pcrj.2005.09.00116701766
  • VozorisNT, O’DonnellDE. Prevalence, risk factors, activity limitation and health care utilization of an obese population-based sample with chronic obstructive pulmonary disease. Can Respir J. 2012;19(3):e18–e24. doi:10.1155/2012/73261822679617
  • ZapateroA, BarbaR, RuizJ, et al. Malnutrition and obesity: influence in mortality and readmissions in chronic obstructive pulmonary disease patients. J Hum Nutr Diet. 2013;26(SUPPL.1):16–22. doi:10.1111/jhn.1208823656492
  • JeeSH, SullJW, ParkJ, et al. Body-mass index and mortality in Korean men and women. N Engl J Med. 2006;355(8):779–787. doi:10.1056/NEJMoa05401716926276
  • SpeltaF, Fratta PasiniAM, CazzolettiL, FerrariM. Body weight and mortality in COPD: focus on the obesity paradox. Eat Weight Disord Stud Anorexia Bulim Obes. 2018;23(1):15–22. doi:10.1007/s40519-017-0456-z
  • Van BorstB, Den, GoskerHR, KosterA, et al. The influence of abdominal visceral fat on inflammatory pathways and mortality risk in obstructive lung disease. Am J Clin Nutr. 2012;96(3):516–526. doi:10.3945/ajcn.112.04077422811442
  • GanzoniA, HeiligP, SchönenbergerK, HügliO, FittingJW, BrändliO. High-caloric nutrition in chronic obstructive lung disease. Schweiz Rundsch Med Prax. 1994;83(1):13–16.8029587
  • CollinsPF, YangIA, ChangY-C, VaughanA. Nutritional support in chronic obstructive pulmonary disease (COPD): an evidence update. J Thorac Dis. 2019;11(Suppl 17):S2230–S2237. doi:10.21037/jtd.2019.10.4131737350
  • BaarendsEM, ScholsAMWJ, PannemansDLE, WesterterpKR, WoutersEFM. Total free living energy expenditure in patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1997;155(2):549–554. doi:10.1164/ajrccm.155.2.90321939032193
  • WilsonDO, DonahoeM, RogersRM, PennockBE. Metabolic rate and weight loss in chronic obstructive lung disease. J Parenter Enter Nutr. 1990;14(1):7–11. doi:10.1177/014860719001400107
  • ScholsAMWJ, FredrixEWHM, SoetersPB, WesterterpKR, WoutersEFM. Resting energy expenditure in patients with chronic obstructive pulmonary disease. Am J Clin Nutr. 1991;54(6):983–987. doi:10.1093/ajcn/54.6.9831957831
  • NordensonA, GrönbergAM, HulthénL, LarssonS, SlindeF. A validated disease specific prediction equation for resting metabolic rate in underweight patients with COPD. Int J Chron Obstruct Pulmon Dis. 2010;5:271–276. doi:10.2147/copd.s1254420856826
  • SlindeF, GrönbergAM, SvantessonU, HulthénL, LarssonS. Energy expenditure in chronic obstructive pulmonary disease-evaluation of simple measures. Eur J Clin Nutr. 2011;65(12):1309–1313. doi:10.1038/ejcn.2011.11721697822
  • BarreiroE, RabinovichR, Marin-CorralJ, BarberàJA, GeaJ, RocaJ. Chronic endurance exercise induces quadriceps nitrosative stress in patients with severe COPD. Thorax. 2009;64(1):13–19. doi:10.1136/thx.2008.10516318835959
  • SharmaR, AnkerSD. Cytokines, apoptosis and cachexia: the potential for TNF antagonism. Int J Cardiol. 2002;85(1):161–171. doi:10.1016/S0167-5273(02)00244-9.12163221
  • LangenRCJ, HaegensA, VernooyJHJ, et al. NF-κB activation is required for the transition of pulmonary inflammation to muscle atrophy. Am J Respir Cell Mol Biol. 2012;47(3):288–297. doi:10.1165/rcmb.2011-0119OC22538866
  • CostaTM, DaRL, CostaFM, et al. Sarcopenia in COPD: relationship with COPD severity and prognosis. J Bras Pneumol. 2015;41(5):415–421. doi:10.1590/S1806-3713201500000004026578132
  • JonesP, Dalziel, SR, LamdinR, et al. Oral non-steroidal anti-inflammatory drugs versus other oral analgesic agents for acute soft tissue injury. Cochrane Database Syst Rev. 2015;2015(7). doi:10.1002/14651858.CD007789.pub2
  • ByunMK, ChoEN, ChangJ, AhnCM, KimHJ. Sarcopenia correlates with systemic inflammation in COPD. Int J Chron Obstruct Pulmon Dis. 2017;12:669–675. doi:10.2147/COPD.S13079028255238
  • de BlasioF, Di GregorioA, de BlasioF, BiancoA, BellofioreB, ScalfiL. Malnutrition and sarcopenia assessment in patients with chronic obstructive pulmonary disease according to international diagnostic criteria, and evaluation of raw BIA variables. Respir Med. 2018;134:1–5. doi:10.1016/j.rmed.2017.11.00629413494
  • EL-GazzarAG, AbdallaME, AlmahdyMA. Study of Osteoporosis in chronic obstructive pulmonary disease. Egypt J Chest Dis Tuberc. 2013;62(1):91–95. doi:10.1016/J.EJCDT.2013.01.009
  • Graat-VerboomL, SmeenkFWJM, Van Den BorneBEEM, et al. Progression of osteoporosis in patients with COPD: a 3-year follow up study. Respir Med. 2012;106(6):861–870. doi:10.1016/j.rmed.2011.12.02022369986
  • CollinsPF, StrattonRJ, EliaM. Nutritional support in chronic obstructive pulmonary disease: a systematic review and meta-analysis. Am J Clin Nutr. 2012;95(6):1385–1395. doi:10.3945/ajcn.111.02349922513295
  • FerreiraIM, BrooksD, WhiteJ, GoldsteinR. Nutritional supplementation for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2012;12:CD000998. doi:10.1002/14651858.CD000998.pub323235577
  • CelliBR, DecramerM, WedzichaJA, et al. An official american thoracic society/european respiratory society statement: research questions in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;191(7):e4–e27. doi:10.1164/rccm.201501-0044ST25830527
  • EggerM, SmithGD, AltmanDG. Systematic Reviews in Health Care: Meta-Analysis in Context. BMJ Books; 2001.
  • EfthimiouJ, MounseyPJ, BensonDN, MadgwickR, ColesSJ, BensonMK. Effect of carbohydrate rich versus fat rich loads on gas exchange and walking performance in patients with chronic obstructive lung disease. Thorax. 1992;47(6):451–456. doi:10.1136/thx.47.6.4511496505
  • KuoCD, ShiaoGM, LeeJD. The effects of high-fat and high-carbohydrate diet loads on gas exchange and ventilation in COPD patients and normal subjects. Chest. 1993;104(1):189–196. doi:10.1378/chest.104.1.1898325067
  • TirlapurVG, MirMA. Effect of low calorie intake on abnormal pulmonary physiology in patients with chronic hypercapneic respiratory failure. Am J Med. 1984;77(6):987–994. doi:10.1016/0002-9343(84)90177-36507470
  • AngelilloVA, BediS, DurfeeD, DahlJ, PattersonAJ, O’DonohueWJ. Effects of low and high carbohydrate feedings in ambulatory patients with chronic obstructive pulmonary disease and chronic hypercapnia. Ann Intern Med. 1985;103(6 (Pt 1)):883–885. doi:10.7326/0003-4819-103-6-8833933397
  • KwanR, MirMA. Beneficial effects of dietary carbohydrate restriction in chronic cor pulmonale. Am J Med. 1987;82(4):751–758. doi:10.1016/0002-9343(87)90011-83105310
  • SINU. Standard quantitativi delle porzioni. Available from: http://www.sinu.it/public/20141111_LARN_Porzioni.pdf.
  • GanWQ, ManSFP, SenthilselvanA, SinDD. Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax. 2004;59(7):574–580. doi:10.1136/thx.2003.01958815223864
  • de BatlleJ, SauledaJ, BalcellsE, et al. Association between Ω3 and Ω6 fatty acid intakes and serum inflammatory markers in COPD. J Nutr Biochem. 2012;23(7):817–821. doi:10.1016/j.jnutbio.2011.04.00521889886
  • ShaharE, BolandLL, FolsomAR, TockmanMS, McGovernPG, EckfeldtJH. Docosahexaenoic acid and smoking-related chronic obstructive pulmonary disease. The atherosclerosis risk in communities study investigators. Am J Respir Crit Care Med. 1999;159(6):1780–1785. doi:10.1164/ajrccm.159.6.981006810351918
  • Garcia-LarsenV, AmigoH, BustosP, BakolisI, RonaRJ. Ventilatory function in young adults and dietary antioxidant intake. Nutrients. 2015;7(4):2879–2896. doi:10.3390/nu704287925884660
  • BroekhuizenR, WoutersEFM, CreutzbergEC, Weling-ScheepersCAPM, ScholsAMWJ. Polyunsaturated fatty acids improve exercise capacity in chronic obstructive pulmonary disease. Thorax. 2005;60(5):376–382. doi:10.1136/thx.2004.03085815860712
  • MatsuyamaW, MitsuyamaH, WatanabeM, et al. Effects of omega-3 polyunsaturated fatty acids on inflammatory markers in COPD. Chest. 2005;128(6):3817–3827. doi:10.1378/chest.128.6.381716354850
  • TuomistoJT, AsikainenA, MeriläinenP, HaapasaariP. Health effects of nutrients and environmental pollutants in Baltic herring and salmon: a quantitative benefit-risk assessment. BMC Public Health. 2020;20(1):64. doi:10.1186/s12889-019-8094-131941472
  • YonedaT, YoshikawaM, FuA, TsukaguchiK, OkamotoY, TakenakaH. Plasma levels of amino acids and hypermetabolism in patients with chronic obstructive pulmonary disease. Nutrition. 2001;17(2):95–99. doi:10.1016/S0899-9007(00)00509-811240335
  • PouwEM, ScholsAM, DeutzNE, WoutersEF. Plasma and muscle amino acid levels in relation to resting energy expenditure and inflammation in stable chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998;158(3):797–801. doi:10.1164/ajrccm.158.3.97080979731007
  • EngelenMP, WoutersEF, DeutzNE, MenheerePP, ScholsAM. Factors contributing to alterations in skeletal muscle and plasma amino acid profiles in patients with chronic obstructive pulmonary disease. Am J Clin Nutr. 2000;72(6):1480–1487. doi:10.1093/ajcn/72.6.148011101475
  • KutsuzawaT, ShioyaS, KuritaD, HaidaM. Plasma branched-chain amino acid levels and muscle energy metabolism in patients with chronic obstructive pulmonary disease. Clin Nutr. 2009;28(2):203–208. doi:10.1016/j.clnu.2009.01.01919250720
  • KaoCC, HsuJWC, BandiV, HananiaNA, KheradmandF, JahoorF. Resting energy expenditure and protein turnover are increased in patients with severe chronic obstructive pulmonary disease. Metabolism. 2011;60(10):1449–1455. doi:10.1016/j.metabol.2011.02.01321550084
  • JonkerR, DeutzNEP, ScholsAMWJ, et al. Whole body protein anabolism in COPD patients and healthy older adults is not enhanced by adding either carbohydrates or leucine to a serving of protein. Clin Nutr. 2019;38(4):1684–1691. doi:10.1016/j.clnu.2018.08.00630150004
  • EngelenMPKJ, De CastroCLN, RuttenEPA, WoutersEFM, ScholsAMWJ, DeutzNEP. Enhanced anabolic response to milk protein sip feeding in elderly subjects with COPD is associated with a reduced splanchnic extraction of multiple amino acids. Clin Nutr. 2012;31(5):616–624. doi:10.1016/j.clnu.2012.04.00622682082
  • EngelenMPKJ, RuttenEPA, De CastroCLN, WoutersEFM, ScholsAMWJ, DeutzNEP. Supplementation of soy protein with branched-chain amino acids alters protein metabolism in healthy elderly and even more in patients with chronic obstructive pulmonary disease. Am J Clin Nutr. 2007;85(2):431–439. doi:10.1093/ajcn/85.2.43117284740
  • DeutzNEP, BauerJM, BarazzoniR, et al. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin Nutr. 2014;33(6):929–936. doi:10.1016/j.clnu.2014.04.00724814383
  • BauerJ, BioloG, CederholmT, et al. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the prot-age study group. J Am Med Dir Assoc. 2013;14(8):542–559. doi:10.1016/j.jamda.2013.05.02123867520
  • BaldrickFR, ElbornJS, WoodsideJV, et al. Effect of fruit and vegetable intake on oxidative stress and inflammation in COPD: a randomised controlled trial. Eur Respir J. 2012;39(6):1377–1384. doi:10.1183/09031936.0008601122088966
  • KaluzaJ, HarrisH, WallinA, LindenA, WolkA. Dietary fiber intake and risk of chronic obstructive pulmonary disease: a prospective cohort study of men. Epidemiology. 2018;29(2):254–260. doi:10.1097/EDE.000000000000075028901975
  • KeranisE, MakrisD, RodopoulouP, et al. Impact of dietary shift to higher-antioxidant foods in COPD: a randomised trial. Eur Respir J. 2010;36(4):774–780. doi:10.1183/09031936.0011380920150206
  • CareyIM, StrachanDP, CookDG. Effects of changes in fresh fruit consumption on ventilatory function in healthy British adults. Am J Respir Crit Care Med. 1998;158(3):728–733. doi:10.1164/ajrccm.158.3.97120659730997
  • LinY-C, WuT-C, ChenP-Y, HsiehL-Y, YehS-L. Comparison of plasma and intake levels of antioxidant nutrients in patients with chronic obstructive pulmonary disease and healthy people in Taiwan: a case-control study. Asia Pac J Clin Nutr. 2010;19(3):393–401.20805084
  • SchwartzJ, WeissST. Relationship between dietary vitamin C intake and pulmonary function in the first national health and nutrition examination survey (NHANES I). Am J Clin Nutr. 1994;59(1):110–114. doi:10.1093/ajcn/59.1.1108279390
  • DagaMK, ChhabraR, SharmaB, MishraTK. Effects of exogenous vitamin E supplementation on the levels of oxidants and antioxidants in chronic obstructive pulmonary disease. J Biosci. 2003;28(1):7–11. doi:10.1007/BF2970125.12682418
  • GouziF, MauryJ, HéraudN, et al. Additional effects of nutritional antioxidant supplementation on peripheral muscle during pulmonary rehabilitation in COPD patients: a randomized controlled trial. Oxid Med Cell Longev. 2019;2019:5496346. doi:10.1155/2019/549634631178967
  • Ochs-BalcomHM, GrantBJB, MutiP, et al. Antioxidants, oxidative stress, and pulmonary function in individuals diagnosed with asthma or COPD. Eur J Clin Nutr. 2006;60(8):991–999. doi:10.1038/sj.ejcn.160241016482071
  • BDAIEO. Banca Dati di Composizione degli Alimenti per studi epidemiologici in Italia; 2015 Available from: http://www.bda-ieo.it.
  • SiedlinskiM, BoerJMA, SmitHA, PostmaDS, BoezenHM. Dietary factors and lung function in the general population: wine and resveratrol intake. Eur Respir J. 2012;39(2):385–391. doi:10.1183/09031936.0018411021852339
  • KaluzaJ, HarrisHR, LindenA, Alcohol ConsumptionWA. Risk of chronic obstructive pulmonary disease: a prospective cohort study of men. Am J Epidemiol. 2019;188(5):907–916. doi:10.1093/aje/kwz02030877760
  • BrittonJ, PavordI, RichardsK, et al. Dietary sodium intake and the risk of airway hyperreactivity in a random adult population. Thorax. 1994;49(9):875–880. doi:10.1136/thx.49.9.8757940426
  • RomieuI, TrengaC. Diet and obstructive lung diseases. Epidemiol Rev. 2001;23(2):268–287. doi:10.1093/oxfordjournals.epirev.a00080612192737
  • BurneyP. A Diet rich in sodium may potentiate asthma. Chest. 1987;91(6):143S–148S. doi:10.1378/chest.91.6_supplement.143s3581956
  • KnoxAJ, AjaoP, BrittonJR, TattersfieldAE. Effect of sodium-transport inhibitors on airway smooth muscle contractility in vitro. Clin Sci. 1990;79(4):315–323. doi:10.1042/cs07903152171851
  • MonteleoneCA, ShermanAR. Nutrition and asthma. Arch Intern Med. 1997;157(1):23–34. doi:10.1001/archinte.1997.00440220027005.8996038
  • ButlerLM, KohWP, LeeHP, TsengM, YuMC, LondonSJ. Prospective study of dietary patterns and persistent cough with phlegm among Chinese Singaporeans. Am J Respir Crit Care Med. 2006;173(3):264–270. doi:10.1164/rccm.200506-901OC16239624
  • EFSA. Tenori di sodio e cloruro di riferimento per l’alimentazione umanaitle. Available from: https://www.efsa.europa.eu/it/press/news/190403.
  • BlackPN, ScraggR. Relationship between serum 25-hydroxyvitamin d and pulmonary function in the third national health and nutrition examination survey. Chest. 2005;128(6):3792–3798. doi:10.1378/chest.128.6.379216354847
  • GindeAA, MansbachJM, CamargoCA. Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the third national health and nutrition examination survey. Arch Intern Med. 2009;169(4):384–390. doi:10.1001/archinternmed.2008.56019237723
  • ShaheenSO, JamesonKA, RobinsonSM, et al. Relationship of vitamin D status to adult lung function and COPD. Thorax. 2011;66(8):692–698. doi:10.1136/thx.2010.15523421653927
  • LangeNE, SparrowD, VokonasP, LitonjuaAA. Vitamin D deficiency, smoking, and lung function in the normative aging study. Am J Respir Crit Care Med. 2012;186(7):616–621. doi:10.1164/rccm.201110-1868OC22822023
  • LehouckA, MathieuC, CarremansC, et al. High doses of vitamin D to reduce exacerbations in chronic obstructive pulmonary disease: a randomized trial. Ann Intern Med. 2012;156(2):105–114. doi:10.7326/0003-4819-156-2-201201170-0000422250141
  • PuhanMA, SiebelingL, FreiA, ZollerM, Bischoff-FerrariH, Ter RietG. No association of 25-hydroxyvitamin D with exacerbations in primary care patients with COPD. Chest. 2014;145(1):37–43. doi:10.1378/chest.13-129624008868
  • ZendedelA, GholamiM, AnbariK, GhanadiK, BachariEC, AzargonA. Effects of vitamin D intake on FEV1 and COPD exacerbation: a randomized clinical trial study. Glob J Health Sci. 2015;7(4):243–248. doi:10.5539/gjhs.v7n4p24325946929
  • KhanDM, UllahA, RandhawaFA, IqtadarS, ButtNF, WaheedK. Role of Vitamin D in reducing number of acute exacerbations in chronic obstructive pulmonary disease (COPD) patients. Pakistan J Med Sci. 2017;33(3):610–614. doi:10.12669/pjms.333.12397
  • SINU. Tabelle Larn. Available from: http://www.sinu.it/html/pag/tabelle_larn_2014_rev.asp.
  • GurgunA, DenizS, ArgınM, KarapolatH. Effects of nutritional supplementation combined with conventional pulmonary rehabilitation in muscle-wasted chronic obstructive pulmonary disease: a prospective, randomized and controlled study. Respirology. 2013;18(3):495–500. doi:10.1111/resp.1201923167516