263
Views
9
CrossRef citations to date
0
Altmetric
Original Research

The Inflammatory Response Induced by RELMβ Upregulates IL-8 and IL-1β Expression in Bronchial Epithelial Cells in COPD

ORCID Icon, , , , , , , ORCID Icon & show all
Pages 2503-2513 | Published online: 02 Sep 2021

References

  • Halpin D, Criner G, Papi A, et al. Global initiative for the diagnosis, management, and prevention of chronic obstructive lung disease. The 2020 GOLD science committee report on COVID-19 and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2021;203(1):24–36. doi:10.1164/rccm.202009-3533SO
  • Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. 2019;394(10204):1145–1158. doi:10.1016/s0140-6736(19)30427-1
  • Barnes P. COPD 2020: new directions needed. Am J Physiol Lung Cell Mol Physiol. 2020;319(5):L884–L886. doi:10.1152/ajplung.00473.2020
  • Hogg JC. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet. 2004;364(9435):709–721.
  • Liu S, Zhou Y, Wang X, et al. Biomass fuels are the probable risk factor for chronic obstructive pulmonary disease in rural South China. Thorax. 2007;62(10):889–897.
  • Hogg J, Timens W. The pathology of chronic obstructive pulmonary disease. Annu Rev Pathol. 2009;4:435–459. doi:10.1146/annurev.pathol.4.110807.092145
  • Holcomb I, Kabakoff R, Chan B, et al. FIZZ1, a novel cysteine-rich secreted protein associated with pulmonary inflammation, defines a new gene family. EMBO J. 2000;19(15):4046–4055. doi:10.1093/emboj/19.15.4046
  • Banerjee A, Mondal NK, Das D, Ray MR. Neutrophilic inflammatory response and oxidative stress in premenopausal women chronically exposed to indoor air pollution from biomass burning. Inflammation. 2012;35(2):671–683.
  • Steppan C, Brown E, Wright C, et al. A family of tissue-specific resistin-like molecules. Proc Natl Acad Sci U S A. 2001;98(2):502–506. doi:10.1073/pnas.98.2.502
  • Liu T, Baek H, Yu H, et al. FIZZ2/RELM-β induction and role in pulmonary fibrosis. J Immunol. 2011;187(1):450–461. doi:10.4049/jimmunol.1000964
  • Fang C, Yin L, Sharma S, et al. Resistin-like molecule-β (RELM-β) targets airways fibroblasts to effect remodelling in asthma: from mouse to man. Clin Exp Allergy. 2015;45(5):940–952. doi:10.1111/cea.12481
  • Yamaji-Kegan K, Su Q, Angelini D, Myers A, Cheadle C, Johns R. Hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELMalpha) increases lung inflammation and activates pulmonary microvascular endothelial cells via an IL-4-dependent mechanism. J Immunol. 2010;185(9):5539–5548. doi:10.4049/jimmunol.0904021
  • Angelini D, Su Q, Yamaji-Kegan K, et al. Resistin-like molecule-beta in scleroderma-associated pulmonary hypertension. Am J Respir Cell Mol Biol. 2009;41(5):553–561. doi:10.1165/rcmb.2008-0271OC
  • Tian H, Liu L, Wu Y, et al. Resistin-like molecule β acts as a mitogenic factor in hypoxic pulmonary hypertension via the Ca-dependent PI3K/Akt/mTOR and PKC/MAPK signaling pathways. Respir Res. 2021;22(1):8. doi:10.1186/s12931-020-01598-4
  • Lin C, Chen L, Huang Z, Wu Y, Liu S. Effect of cigarette smoke extraction on the expression of found in inflammatory zone 1 in rat lung epithelial L2 cells. Chin Med J. 2014;127(12):2363–2367.
  • Johns R, Takimoto E, Meuchel L, et al. Hypoxia-inducible factor 1α is a critical downstream mediator for hypoxia-induced mitogenic factor (FIZZ1/RELMα)-induced pulmonary hypertension. Arterioscler Thromb Vasc Biol. 2016;36(1):134–144. doi:10.1161/atvbaha.115.306710
  • Propheter D, Chara A, Harris T, Ruhn K, Hooper L. Resistin-like molecule β is a bactericidal protein that promotes spatial segregation of the microbiota and the colonic epithelium. Proc Natl Acad Sci U S A. 2017;114(42):11027–11033. doi:10.1073/pnas.1711395114
  • Tsuboi K, Nishitani M, Takakura A, Imai Y, Komatsu M, Kawashima H. Autophagy protects against colitis by the maintenance of normal gut microflora and secretion of mucus. J Biol Chem. 2015;290(33):20511–20526. doi:10.1074/jbc.M114.632257
  • Wernstedt Asterholm I, Kim-Muller J, Rutkowski J, Crewe C, Tao C, Scherer P. Pathological Type-2 immune response, enhanced tumor growth, and glucose intolerance in Retnlβ (RELMβ) null mice: a model of intestinal immune system dysfunction in disease susceptibility. Am J Pathol. 2016;186(9):2404–2416. doi:10.1016/j.ajpath.2016.04.017
  • Barnes P. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 2008;8(3):183–192. doi:10.1038/nri2254
  • Zhou R, Qu Y, Huang Q, Sun X, Mu D, Li X. Recombinant CC16 regulates inflammation, oxidative stress, apoptosis and autophagy via the inhibition of the p38MAPK signaling pathway in the brain of neonatal rats with sepsis. Brain Res. 2019;1725:146473. doi:10.1016/j.brainres.2019.146473
  • Lin Z, Jin J, Shan X. Fish oils protects against cecal ligation and puncture‑induced septic acute kidney injury via the regulation of inflammation, oxidative stress and apoptosis. Int J Mol Med. 2019;44(5):1771–1780. doi:10.3892/ijmm.2019.4337
  • Koo H, Vasilescu D, Booth S, et al. Small airways disease in mild and moderate chronic obstructive pulmonary disease: a cross-sectional study. Lancet Respir Med. 2018;6(8):591–602. doi:10.1016/s2213-2600(18)30196-6
  • Pirina P, Foschino Barbaro M, Paleari D, Spanevello A. Small airway inflammation and extrafine inhaled corticosteroids plus long-acting beta-agonists formulations in chronic obstructive pulmonary disease. Respir Med. 2018;143:74–81. doi:10.1016/j.rmed.2018.08.013
  • Hogg J, Chu F, Utokaparch S, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004;350(26):2645–2653. doi:10.1056/NEJMoa032158
  • Moosavi S, Prabhala P, Ammit A. Role and regulation of MKP-1 in airway inflammation. Respir Res. 2017;18(1):154. doi:10.1186/s12931-017-0637-3
  • Kushiyama A, Shojima N, Ogihara T, et al. Resistin-like molecule beta activates MAPKs, suppresses insulin signaling in hepatocytes, and induces diabetes, hyperlipidemia, and fatty liver in transgenic mice on a high fat diet. J Biol Chem. 2005;280(51):42016–42025. doi:10.1074/jbc.M503065200
  • Bin Y, Ma N, Lu Y, et al. Erythromycin reverses cigarette smoke extract-induced corticosteroid insensitivity by inhibition of the JNK/c-Jun pathway. Free Radic Biol Med. 2020;152:494–503. doi:10.1016/j.freeradbiomed.2019.11.020
  • Wang Y, Fan C, Chen B, Shi J. Resistin-like molecule beta (RELM-β) regulates proliferation of human diabetic nephropathy mesangial cells via Mitogen-Activated Protein Kinases (MAPK) signaling pathway. Med Sci Monitor. 2017;23:3897–3903. doi:10.12659/msm.905381
  • Chen G, Wang S, Jang J, Odegaard J, Nair M. Comparison of RELMα and RELMβ single- and double-gene-deficient mice reveals that RELMα expression dictates inflammation and worm expulsion in Hookworm infection. Infect Immun. 2016;84(4):1100–1111. doi:10.1128/iai.01479-15
  • Higham A, Bostock D, Booth G, Dungwa J, Singh D. The effect of electronic cigarette and tobacco smoke exposure on COPD bronchial epithelial cell inflammatory responses. Int J Chron Obstruct Pulmon Dis. 2018;13:989–1000. doi:10.2147/copd.S157728
  • Zeng Y, Hu W, Zuo Y, Wang X, Zhang J. Altered serum levels of type I collagen turnover indicators accompanied by IL-6 and IL-8 release in stable COPD. Int J Chron Obstruct Pulmon Dis. 2019;14:163–168. doi:10.2147/copd.S188139
  • Hogan S, Seidu L, Blanchard C, et al. Resistin-like molecule beta regulates innate colonic function: barrier integrity and inflammation susceptibility. J Allergy Clin Immunol. 2006;118(1):257–268. doi:10.1016/j.jaci.2006.04.039
  • Keatings V, Collins P, Scott D, Barnes P. Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med. 1996;153(2):530–534. doi:10.1164/ajrccm.153.2.8564092
  • Khan Y, Kirkham P, Barnes P, Adcock I. Brd4 is essential for IL-1β-induced inflammation in human airway epithelial cells. PLoS One. 2014;9(4):e95051. doi:10.1371/journal.pone.0095051
  • Ozretić P, da Silva Filho M, Catalano C, et al. NLRP1Association of coding polymorphism with lung function and serum IL-1β concentration in patients diagnosed with chronic Obstructive Pulmonary Disease (COPD). Genes. 2019;10:10. doi:10.3390/genes10100783
  • Fu J, McDonald V, Baines K, Gibson P. Airway IL-1β and systemic inflammation as predictors of future exacerbation risk in asthma and COPD. Chest. 2015;148(3):618–629. doi:10.1378/chest.14-2337
  • Osei E, Brandsma C, Timens W, Heijink I, Hackett T. Current perspectives on the role of interleukin-1 signalling in the pathogenesis of asthma and COPD. Eur Respir J. 2020;55:2. doi:10.1183/13993003.00563-2019.
  • Birrell M, Eltom S. The role of the NLRP3 inflammasome in the pathogenesis of airway disease. Pharmacol Ther. 2011;130(3):364–370. doi:10.1016/j.pharmthera.2011.03.007
  • Fei X, Bao W, Zhang P, et al. Inhalation of progesterone inhibits chronic airway inflammation of mice exposed to ozone. Mol Immunol. 2017;85:174–184. doi:10.1016/j.molimm.2017.02.006
  • Huang C, Xie M, He X, Gao H. Activity of sputum p38 MAPK is correlated with airway inflammation and reduced FEV1 in COPD patients. Med Sci Monit. 2013;19:1229–1235. doi:10.12659/MSM.889880