142
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Moderate Treadmill Training Induces Limited Effects on Quadriceps Muscle Hypertrophy in Mice Exposed to Cigarette Smoke Involving Metalloproteinase 2

, ORCID Icon, , ORCID Icon, ORCID Icon, , & show all
Pages 33-42 | Published online: 06 Jan 2022

References

  • Mehrotra R, Grover S, Chandra A. Role of World Health Organization Framework Convention on Tobacco Control Global Knowledge Hub on Smokeless Tobacco. Indian J Med Res. 2018;148(1):7–13. doi:10.4103/ijmr.IJMR_2036_17
  • Peruga A, Lopez MJ, Martinez C, Fernandez E. Tobacco control policies in the 21st century: achievements and open challenges. Mol Oncol. 2021;15(3):744–752. doi:10.1002/1878-0261.12918
  • Sheffer CE, Al-Zalabani A, Aubrey A, et al. The Emerging Global Tobacco Treatment Workforce: characteristics of Tobacco Treatment Specialists Trained in Council-Accredited Training Programs from 2017 to 2019. Int J Environ Res Public Health. 2021;18(5):665. doi:10.3390/ijerph18052416
  • Kok MO, Hoekstra T, Twisk JW. The longitudinal relation between smoking and muscle strength in healthy adults. Eur Addict Res. 2012;18(2):70–75. doi:10.1159/000333600
  • Degens H, Gayan-Ramirez G, van Hees HW. Smoking-induced skeletal muscle dysfunction: from evidence to mechanisms. Am J Respir Crit Care Med. 2015;191(6):620–625. doi:10.1164/rccm.201410-1830PP
  • Nogueira L, Trisko BM, Lima-Rosa FL, et al. Cigarette smoke directly impairs skeletal muscle function through capillary regression and altered myofibre calcium kinetics in mice. J Physiol. 2018;596(14):2901–2916. doi:10.1113/JP275888
  • Petersen AM, Magkos F, Atherton P, et al. Smoking impairs muscle protein synthesis and increases the expression of myostatin and MAFbx in muscle. Am J Physiol Endocrinol Metab. 2007;293(3):E843–8. doi:10.1152/ajpendo.00301.2007
  • Tang K, Wagner PD, Breen EC. TNF-alpha-mediated reduction in PGC-1alpha may impair skeletal muscle function after cigarette smoke exposure. J Cell Physiol. 2010;222(2):320–327. doi:10.1002/jcp.21955
  • Caron MA, Morissette MC, Theriault ME, Nikota JK, Stampfli MR, Debigare R. Alterations in skeletal muscle cell homeostasis in a mouse model of cigarette smoke exposure. PLoS One. 2013;8(6):e66433. doi:10.1371/journal.pone.0066433
  • Saha Sp, Bhalla DK, Whayne TF Jr, Gairola C. Cigarette smoke and adverse health effects: an overview of research trends and future needs. Int J Angiol. 2007;16(3):77–83. doi:10.1055/s-0031-1278254
  • Cheung KK, Fung TK, Mak JCW, et al. The acute effects of cigarette smoke exposure on muscle fiber type dynamics in rats. PLoS One. 2020;15(5):e0233523. doi:10.1371/journal.pone.0233523
  • Marillier M, Bernard AC, Verges S, Neder JA. Locomotor Muscles in COPD: the Rationale for Rehabilitative Exercise Training. Front Physiol. 2019;10:1590. doi:10.3389/fphys.2019.01590
  • Zhang Q, Joshi SK, Lovett DH, et al. Matrix metalloproteinase-2 plays a critical role in overload induced skeletal muscle hypertrophy. Muscles Ligaments Tendons J. 2014;4(3):362–370. doi:10.32098/mltj.03.2014.16
  • de Sousa Neto IV, Durigan JLQ, Guzzoni V, et al. Effects of resistance training on matrix metalloproteinase activity in skeletal muscles and blood circulation during aging. Front Physiol. 2018;9:190. doi:10.3389/fphys.2018.00190
  • Martinez-Huenchullan S, McLennan SV, Verhoeven A, Twigg SM, Tam CS. The emerging role of skeletal muscle extracellular matrix remodelling in obesity and exercise. Obes Rev. 2017;18(7):776–790. doi:10.1111/obr.12548
  • Alameddine HS, Morgan JE. Matrix metalloproteinases and tissue inhibitor of metalloproteinases in inflammation and fibrosis of skeletal muscles. J Neuromuscul Dis. 2016;3(4):455–473. doi:10.3233/JND-160183
  • Chen X, Li Y. Role of matrix metalloproteinases in skeletal muscle: migration, differentiation, regeneration and fibrosis. Cell Adh Migr. 2009;3(4):337–341. doi:10.4161/cam.3.4.9338
  • de Sousa Neto IV, Durigan JLQ, Carreiro de Farias Junior G, et al. Resistance training modulates the matrix metalloproteinase-2 activity in different trabecular bones in aged rats. Clin Interv Aging. 2021;16:71–81. doi:10.2147/CIA.S276518
  • Carmeli E, Moas M, Lennon S, Powers SK. High intensity exercise increases expression of matrix metalloproteinases in fast skeletal muscle fibres. Exp Physiol. 2005;90(4):613–619. doi:10.1113/expphysiol.2004.029462
  • Carmeli E, Moas M, Reznick AZ, Coleman R. Matrix metalloproteinases and skeletal muscle: a brief review. Muscle Nerve. 2004;29(2):191–197. doi:10.1002/mus.10529
  • de Sousa Neto IV, Tibana RA, da Cunha Nascimento D, et al. Effects of resistance training volume on MMPs in circulation, muscle and adipose tissue. Int J Sports Med. 2017;38(4):307–313. doi:10.1055/s-0042-123192
  • Vieira Ramos G, Choqueta de Toledo-arruda A, Maria Pinheiro-Dardis C, et al. Exercise prevents diaphragm wasting induced by cigarette smoke through modulation of antioxidant genes and metalloproteinases. Biomed Res Int. 2018;2018:5909053. doi:10.1155/2018/5909053
  • Toledo AC, Magalhaes RM, Hizume DC, et al. Aerobic exercise attenuates pulmonary injury induced by exposure to cigarette smoke. Eur Respir J. 2012;39(2):254–264. doi:10.1183/09031936.00003411
  • Council NR. Guide for the Care and Use of Laboratory Animals. 8th ed. 2011.
  • Percie Du Sert N, Hurst V, Ahluwalia A, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. J Physiol. 2020;598(18):3793–3801. doi:10.1113/JP280389
  • de Sousa Neto IV, Carvalho MM, Marqueti RC, et al. Proteomic changes in skeletal muscle of aged rats in response to resistance training. Cell Biochem Funct. 2020;38(4):500–509. doi:10.1002/cbf.3497
  • Oliveira JRS, Mohamed JS, Myers MJ, Brooks MJ, Alway SE. Effects of hindlimb suspension and reloading on gastrocnemius and soleus muscle mass and function in geriatric mice. Exp Gerontol. 2019;115:19–31. doi:10.1016/j.exger.2018.11.011
  • Durigan JL, Peviani SM, Russo TL, et al. Physical training leads to remodeling of diaphragm muscle in asthma model. Int J Sports Med. 2009;30(6):430–434. doi:10.1055/s-0028-1112145
  • Frederiks WM, Mook OR. Metabolic mapping of proteinase activity with emphasis on in situ zymography of gelatinases: review and protocols. J Histochem Cytochem. 2004;52(6):711–722. doi:10.1369/jhc.4R6251.2004
  • Montes de Oca M, Loeb E, Torres SH, De Sanctis J, Hernandez N, Talamo C. Peripheral muscle alterations in non-COPD smokers. Chest. 2008;133(1):13–18. doi:10.1378/chest.07-1592
  • Nakatani T, Nakashima T, Kita T, Ishihara A. Responses of exposure to cigarette smoke at three dosage levels on soleus muscle fibers in Wistar-Kyoto and spontaneously hypertensive rats. Jpn J Pharmacol. 2002;90(2):157–163. doi:10.1254/jjp.90.157
  • Maltais F, LeBlanc P, Simard C, et al. Skeletal muscle adaptation to endurance training in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1996;154(2 Pt 1):442–447. doi:10.1164/ajrccm.154.2.8756820
  • Chan SMH, Cerni C, Passey S, et al. Cigarette smoking exacerbates skeletal muscle injury without compromising its regenerative capacity. Am J Respir Cell Mol Biol. 2020;62(2):217–230. doi:10.1165/rcmb.2019-0106OC
  • Doucet M, Dube A, Joanisse DR, et al. Atrophy and hypertrophy signalling of the quadriceps and diaphragm in COPD. Thorax. 2010;65(11):963–970. doi:10.1136/thx.2009.133827
  • Sandri M, Sandri C, Gilbert A, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 2004;117(3):399–412. doi:10.1016/s0092-8674(04)00400-3
  • Ribisl PM, Lang W, Jaramillo SA, et al. Exercise capacity and cardiovascular/metabolic characteristics of overweight and obese individuals with type 2 diabetes: the Look AHEAD clinical trial. Diabetes Care. 2007;30(10):2679–2684. doi:10.2337/dc06-2487
  • Chen CL, Tang JS, Li PC, Chou PL. Immediate effects of smoking on cardiorespiratory responses during dynamic exercise: arm vs. leg ergometry. Front Physiol. 2015;1:376. doi:10.3389/fphys.2015.00376
  • Konopka AR, Harber MP. Skeletal muscle hypertrophy after aerobic exercise training. Exerc Sport Sci Rev. 2014;42(2):53–61. doi:10.1249/JES.0000000000000007
  • Grgic J, McLlvenna LC, Fyfe JJ, et al. Does aerobic training promote the same skeletal muscle hypertrophy as resistance training? A systematic review and meta-analysis. Sports Med. 2019;49(2):233–254. doi:10.1007/s40279-018-1008-z
  • Vieira Ramos G, Pinheiro CM, Messa SP, et al. Cryotherapy reduces inflammatory response without altering muscle regeneration process and extracellular matrix remodeling of rat muscle. Sci Rep. 2016;6:18525. doi:10.1038/srep18525
  • Snijders T, Nederveen JP, McKay BR, et al. Satellite cells in human skeletal muscle plasticity. Front Physiol. 2015;6:283. doi:10.3389/fphys.2015.00283
  • Ferre PJ, Liaubet L, Concordet D, et al. Longitudinal analysis of gene expression in porcine skeletal muscle after post-injection local injury. Pharm Res. 2007;24(8):1480–1489. doi:10.1007/s11095-007-9266-8
  • Fukushima K, Nakamura A, Ueda H, et al. Activation and localization of matrix metalloproteinase-2 and −9 in the skeletal muscle of the muscular dystrophy dog (CXMDJ). BMC Musculoskelet Disord. 2007;8:54. doi:10.1186/1471-2474-8-54
  • Kherif S, Lafuma C, Dehaupas M, et al. Expression of matrix metalloproteinases 2 and 9 in regenerating skeletal muscle: a study in experimentally injured and mdx muscles. Dev Biol. 1999;205(1):158–170. doi:10.1006/dbio.1998.9107
  • Hadler-Olsen E, Solli AI, Hafstad A, Winberg JO, Uhlin-Hansen L. Intracellular MMP-2 activity in skeletal muscle is associated with type II fibers. J Cell Physiol. 2015;230(1):160–169. doi:10.1002/jcp.24694
  • Kim J, Lee J. Matrix metalloproteinase and tissue inhibitor of metalloproteinase responses to muscle damage after eccentric exercise. J Exerc Rehabil. 2016;12(4):260–265. doi:10.12965/jer.1632640.320
  • Lee YP, Choi DG. MMPs, TIMPs and BMP-4 in medial rectus muscle obtained from intermittent exotropia patients and their clinical correlations. Acta Ophthalmol. 2020;98(1):e107–e112. doi:10.1111/aos.14217