184
Views
4
CrossRef citations to date
0
Altmetric
Review

Treating COPD Patients with Inhaled Medications in the Era of COVID-19 and Beyond: Options and Rationales for Patients at Home

ORCID Icon, , &
Pages 2687-2695 | Published online: 28 Sep 2021

References

  • Interim U.S. Guidance for risk assessment and public health management of healthcare personnel with potential exposure in a healthcare setting to patients with coronavirus disease (COVID-19). Center for Disease Control and Prevention; 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/hcp/guidance-risk-assesment-hcp.html. Accessed September 14, 2021.
  • Johnston SL. Overview of virus-induced airway disease. Proc Am Thorac Soc. 2005;2(2):150–156. doi:10.1513/pats.200502-018AW
  • Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology. 2018;23(2):130–137. doi:10.1111/resp.13196
  • Kerkhove V, Alaswad S, Assiri A, et al. Transmissibility of MERS-CoV infection in closed setting. Emerg Infect Dis. 2015;25:1802–1809.
  • Assaf SM, Tarasevych SP, Diamant Z, Hanania NA. Asthma and severe acute respiratory syndrome coronavirus 2019: current evidence and knowledge gaps. Curr Opin Pulm Med. 2021;27(1):45–53. doi:10.1097/MCP.0000000000000744
  • Halpin DMG, Faner R, Sibila O, Badia JR, Agusti A. Do chronic respiratory diseases or their treatment affect the risk of SARS-CoV-2 infection? Lancet Respir Med. 2020;8(5):436–438. doi:10.1016/S2213-2600(20)30167-3
  • Recommendations for inhaled asthma controller medications. Global Initiative for Asthma; 2020. Available from: https://ginasthma.org/recommendations-for-inhaled-asthma-controller-medications/. Accessed September 14, 2021.
  • Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease 2020 report; 2020. Available from: http://www.goldcopd.org. Accessed September 14, 2021.
  • Ari A. Use of aerosolised medications at home for COVID-19. Lancet Respir Med. 2020;8(8):754–756. doi:10.1016/S2213-2600(20)30270-8
  • Ari A, Restrepo RD. Aerosol delivery device selection for spontaneously breathing patients: 2012. Respir Care. 2012;57(4):613–626. doi:10.4187/respcare.01756
  • Ari A, Fink J. Guidelines to aerosol devices in infants, children and adults: which to choose, why and how to achieve effective aerosol therapy? Expert Rev Respir Med. 2011;5(4):561–572. doi:10.1586/ers.11.49
  • Ari A, Fink JB. Differential medical aerosol device and interface selection in patients during spontaneous, conventional mechanical and noninvasive ventilation. J Aerosol Med Pulm Drug Deliv. 2016;29(2):95–106. doi:10.1089/jamp.2015.1266
  • DePietro M, Gilbert I, Millette LA, Riebe M. Inhalation device options for the management of chronic obstructive pulmonary disease. Postgrad Med. 2018;130(1):83–97. doi:10.1080/00325481.2018.1399042
  • Wieshammer S, Dreyhaupt J. Dry powder inhalers: which factors determine the frequency of handling errors? Respiration. 2008;75(1):18–25. doi:10.1159/000109374
  • Jarvis S, Ind PW, Shiner RJ. Inhaled therapy in elderly COPD patients; time for re-evaluation? Age Ageing. 2007;36(2):213–218. doi:10.1093/ageing/afl174
  • Fromer L, Goodwin E, Walsh J. Customizing inhaled therapy to meet the needs of COPD patients. Postgrad Med. 2010;122(2):83–93. doi:10.3810/pgm.2010.03.2125
  • Lavorini F, Mannini C, Chellini E, Fontana GA. Optimising inhaled pharmacotherapy for elderly patients with chronic obstructive pulmonary disease: the importance of delivery devices. Drugs Aging. 2016;33(7):461–473. doi:10.1007/s40266-016-0377-y
  • Fink JB, Rubin BK. Problems with inhaler use: a call for improved clinician and patient education. Respir Care. 2005;50:1360–1374.
  • Fink JB. Inhalers in asthma management: is demonstration the key to compliance? Respir Care. 2005;50:598–600.
  • Lewis RM, Fink JB. Promoting adherence to inhaled therapy: building partnerships through patient education. Respir Care Clin N Am. 2001;7(2):277–301,vi. doi:10.1016/S1078-5337(05)70034-4
  • Hanania NA, Braman S, Adams SG, et al. The role of inhalation delivery devices in COPD: perspectives of patients and health care providers. Chronic Obstr Pulm Dis. 2018;5(2):111–123. doi:10.15326/jcopdf.5.2.2017.0168
  • Ari A. Practical strategies for a safe and effective delivery of aerosolized medications to patients with COVID-19. Respir Med. 2020;167:105987. doi:10.1016/j.rmed.2020.105987
  • Ari A. Promoting safe and effective use of aerosol devices in COVID-19: risks and suggestions for viral transmission. Expert Opin Drug Deliv. 2020;17(11):1509–1513. doi:10.1080/17425247.2020.1811225
  • Ari A. Patient education and adherence to aerosol therapy. Respir Care. 2015;60(6):941–955. doi:10.4187/respcare.03854
  • Ari A, Fink J. Aerosol therapy in children: challenges and solutions. Expert Rev Respir Med. 2013;7(6):665–672. doi:10.1586/17476348.2013.847369
  • Dhand R, Mahler DA, Carlin BW, et al. Results of a patient survey regarding COPD knowledge, treatment experiences, and practices with inhalation devices. Respir Care. 2018;63(7):833–839. doi:10.4187/respcare.05715
  • Luczak-Wozniak K, Dabrowska M, Domagala I, et al. Mishandling of pMDI and DPI inhalers in asthma and COPD – repetitive and non-repetitive errors. Pulm Pharmacol Ther. 2018;51:65–72. doi:10.1016/j.pupt.2018.06.002
  • Riley J, Krüger P. Optimising inhaler technique in chronic obstructive pulmonary disease: a complex issue. Br J Nurs. 2017;26(7):391–397. doi:10.12968/bjon.2017.26.7.391
  • Elbeddini A, Yeats A. Amid COVID-19 drug shortages: proposed plan for reprocessing and reusing salbutamol pressurized metered dose inhalers (pMDIs) for shared use. Drugs Ther Perspect. 2020;36:1–3.
  • Press VG, Gershon AS, Sciurba FC, Blagev DP. Concerns about coronavirus disease-related collateral damage for patients with COPD. Chest. 2020;158(3):866–868. doi:10.1016/j.chest.2020.05.549
  • Ari A. Jet, mesh and ultrasonic nebulizers: an evaluation of nebulizers for better clinical practice. Eurasian J Pulmonol. 2014;16:1–7.
  • Rau JL. Design principles of liquid nebulization devices currently in use. Respir Care. 2002;47:1257–1275.
  • Ari A. Effect of nebulizer type, delivery interface, and flow rate on aerosol drug delivery to spontaneously breathing pediatric and infant lung models. Pediatr Pulmonol. 2019;54(11):1735–1741. doi:10.1002/ppul.24449
  • Ari A, de Andrade AD, Sheard M, AlHamad B, Fink JB. Performance comparisons of jet and mesh nebulizers using different interfaces in simulated spontaneously breathing adults and children. J Aerosol Med Pulm Drug Deliv. 2015;28(4):281–289. doi:10.1089/jamp.2014.1149
  • O’Toole C, McGrath J, Bennett G, Joyce M, MacLoughlin R, Byrne M. Fugitive emissions from a breath actuated jet nebuliser and a vibrating mesh nebuliser for a paediatric patient. In: ISES-ISIAQ 2019; 2019; Kaunas, Lithuania.
  • Mitchell JP, Nagel MW. Valved holding chambers (VHCs) for use with pressurised metered-dose inhalers (pMDIs): a review of causes of inconsistent medication delivery. Prim Care Respir J. 2007;16(4):207–214. doi:10.3132/pcrj.2007.00034
  • Wildhaber JH, Devadason SG, Eber E, et al. Effect of electrostatic charge, flow, delay and multiple actuations on the in vitro delivery of salbutamol from different small volume spacers for infants. Thorax. 1996;51(10):985–988. doi:10.1136/thx.51.10.985
  • Wildhaber JH, Janssens HM, Pierart F, Dore ND, Devadason SG, LeSouef PN. High-percentage lung delivery in children from detergent-treated spacers. Pediatr Pulmonol. 2000;29(5):389–393. doi:10.1002/(SICI)1099-0496(200005)29:5<389::AID-PPUL8>3.0.CO;2-3
  • Wildhaber J, Devadason S, Hayden M, et al. Electrostatic charge on a plastic spacer device influences the delivery of salbutamol. Eur Respir J. 1996;9(9):1943–1946. doi:10.1183/09031936.96.09091943
  • Pierart F, Wildhaber J, Vrancken I, Devadason SG, Le Souef PN. Washing spacers in household detergent reduces electrostatic charge and greatly improves delivery. Eur Respir J. 1999;13(3):673–678. doi:10.1183/09031936.99.13367399
  • Dompeling E, Oudesluys-Murphy AM, Janssens HM, et al. Randomised controlled study of clinical efficacy of spacer therapy in asthma with regard to electrostatic charge. Arch Dis Child. 2001;84(2):178–182. doi:10.1136/adc.84.2.178
  • Anhoj J, Bisgaard H, Lipworth BJ. Effect of electrostatic charge in plastic spacers on the lung delivery of HFA-salbutamol in children. Br J Clin Pharmacol. 1999;47(3):333–336. doi:10.1046/j.1365-2125.1999.00893.x
  • Bisgaard H, Anhoj J, Klug B, Berg E. A non-electrostatic spacer for aerosol delivery. Arch Dis Child. 1995;73(3):226–230. doi:10.1136/adc.73.3.226
  • Ari A. Drug delivery interfaces: a way to optimize inhalation therapy in spontaneously breathing children. World J Clin Pediatr. 2016;5(3):281–287. doi:10.5409/wjcp.v5.i3.281
  • McGrath J, O’Toole C, Joyce GB, Joyce M, Byrne MA, MacLoughlin R. Investigation of fugitive aerosols released into the environment during high-flow therapy. Pharmaceutics. 2019;11(6):254. doi:10.3390/pharmaceutics11060254
  • Ari A. Optimizing inhalation therapy in spontaneously breathing patients. Clin Pulm Med. 2014;21(1):34–41. doi:10.1097/CPM.0000000000000019
  • Rubin BK. Air and soul: the science and application of aerosol therapy. Respir Care. 2010;55:911–921.
  • Rau JL. 2004 Philip Kittredge Memorial Lecture. The inhalation of drugs: advantages and problems. Respir Care. 2005;50:367–382.
  • Rau JL. Practical problems with aerosol therapy in COPD. Respir Care. 2006;51:158–172.
  • McFadden ER Jr. Improper patient techniques with metered dose inhalers: clinical consequences and solutions to misuse. J Allergy Clin Immunol. 1995;96(2):278–283. doi:10.1016/S0091-6749(95)70206-7
  • Lavorini F, Levy ML, Corrigan C, Crompton G. The ADMIT series - issues in inhalation therapy. 6) training tools for inhalation devices. Prim Care Respir J. 2010;19(4):335–341. doi:10.4104/pcrj.2010.00065
  • Chrystyn H. Is inhalation rate important for a dry powder inhaler? Using the in-check dial to identify these rates. Respir Med. 2003;97(2):181–187. doi:10.1053/rmed.2003.1351
  • Fiato KL, Iwamoto GK, Harkins MS, Morelos J. Monitoring flow rates and retention of inhalation techniques using the in-check dial device in adult asthmatics. J Asthma. 2007;44(3):209–212. doi:10.1080/02770900701209798
  • Amirav I, Newhouse MT, Mansour Y. Measurement of peak inspiratory flow with in-check dial device to simulate low-resistance (Diskus) and high-resistance (Turbohaler) dry powder inhalers in children with asthma. Pediatr Pulmonol. 2005;39(5):447–451. doi:10.1002/ppul.20180
  • van der Palen J. Peak inspiratory flow through diskus and turbuhaler, measured by means of a peak inspiratory flow meter (In-Check DIAL). Respir Med. 2003;97(3):285–289. doi:10.1053/rmed.2003.1289
  • Saeed H, Mohsen M, Fink J, et al. Fill volume, humidification and heat effects on aerosol delivery and fugitive emissions during noninvasive ventilation. J Drug Deliv Sci Technol. 2017;39:372–378. doi:10.1016/j.jddst.2017.04.026
  • Nazaroff W. Indoor bioaerosol dynamics. Indoor Air. 2016;26(1):61–78. doi:10.1111/ina.12174
  • Long C, Suh H, Catalano P, Koutrakis P. Using time- and size-resolved particulate data to quantify indoor penetration and deposition behavior. Environ Sci Technol. 2001;35(10):2089–2099. doi:10.1021/es001477d
  • McGrath J, Byrne M, Ashmore M, Terry A, Dimitroulopoulou C. Development of a probabilistic multi-zone multi-source computational model and demonstration of its applications in predicting PM concentrations indoors. Sci Total Environ. 2014;490:798–806. doi:10.1016/j.scitotenv.2014.05.081
  • McGrath J, Byrne M, Ashmore M, Terry A, Dimitroulopoulou C. A simulation study of the changes in PM2.5 concentrations due to interzonal airflow variations caused by internal door opening patterns. Atmos Environ. 2014;87:183–188. doi:10.1016/j.atmosenv.2014.01.050
  • Ciuzas D, Prasauskas T, Krugly E, et al. Characterization of indoor aerosol temporal variations for the real-time management of indoor air quality. Atmos Environ. 2015;118:107–117. doi:10.1016/j.atmosenv.2015.07.044
  • Tran K, Cimon K, Severn M, Pessoa-Silva C, Conly J, Semple MG. Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: a systematic review. PLoS One. 2012;7(4):e35797. doi:10.1371/journal.pone.0035797
  • Wittgen BP, Kunst PW, Perkins WR, Lee JK, Postmus PE. Assessing a system to capture stray aerosol during inhalation of nebulized liposomal cisplatin. J Aerosol Sci. 2006;19(3):385–391. doi:10.1089/jam.2006.19.385
  • Ari A, Scott JB. Lessons learned about aerosol drug delivery in the era of COVID-19. CHEST; 2021. Available from: https://www.chestnet.org/Topic-Collections/COVID-19/COVID-in-Focus/Lessons-Learned-About-Aerosol-Drug-Delivery-in-the-Era-of-COVID-19. Accessed September 14, 2021.
  • O’Malley CA. Device cleaning and infection control in aerosol therapy. Respir Care. 2015;60(6):917–927. doi:10.4187/respcare.03513
  • Tablan O, Anderson L, Besser R, Bridges C, Hajjeh R. Guidelines for preventing health care–associated pneumonia. Recommendations of the CDC and the healthcare infection control practices advisory committee. MMWR Recommendations & Reports; 2004 [updated March 26, 2004; cited January 19, 2009]. Available from: http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5303a1.htm. Accessed September 14, 2021.
  • Cleaning and disinfecting nebulizers. Cystic FIbrosis Foundation; 2019. Available from: https://www.cff.org/Life-With-CF/Treatments-and-Therapies/Medications/Nebulizer-Care-at-Home/. Accessed September 14, 2021.
  • Kriegel M, Buchholz P, Gastmeier P, Bischoff P, Abdelgawad I, Hartmann A. Predicted infection risk for aerosol transmission of SARS-CoV-2. Medrxiv. 2020. Available from: https://www.medrxiv.org/content/10.1101/2020.10.08.20209106v5. Accessed September 14, 2021.
  • Kupper M, Asbach C, Schneiderwind U, Finger H, Spiegelhoff D, Schumacher S. Testing of an indoor air cleaner for particulate pollutants under realistic conditions in an office room. Aerosol Air Qual Res. 2019;19(8):1655–1665. doi:10.4209/aaqr.2019.01.0029
  • Pei J, Dong C, Liu J. Operating behavior and corresponding performance of portable air cleaners in residential buildings, China. Build Environ. 2019;147:473–481. doi:10.1016/j.buildenv.2018.08.009
  • Home care for patients with COVID-19 presenting with mild symptoms and management of their contacts. World Health Organization; 2020 [updated May 14, 2020]. Available from: https://www.who.int/publications-detail/home-care-for-patients-with-suspected-novel-coronavirus-(ncov)-infection-presenting-with-mild-symptoms-and-management-of-contacts. Accessed September 14, 2021.
  • Fink J, Ehrmann S, Li J, et al. Reducing aerosol-related risk of transmission in the era of COVID-19. J Aerosol Med Pulm Drug Deliv. 2020;33(6):300–304. doi:10.1089/jamp.2020.1615
  • Jensen MH, Cichosz SL, Hejlesen OK, et al. Clinical impact of home telemonitoring on patients with chronic obstructive pulmonary disease. Telemed J E Health. 2012;18(9):674–678. doi:10.1089/tmj.2012.0003
  • Sanchez-Morillo D, Fernandez-Granero MA, Jiménez AL. Detecting COPD exacerbations early using daily telemonitoring of symptoms and k-means clustering: a Pilot Study. Med Biol Eng Comput. 2015;53(5):441–451. doi:10.1007/s11517-015-1252-4
  • Alrajab S, Smith TR, Owens M, Areno JP, Caldito G. A home telemonitoring program reduced exacerbation and healthcare utilization rates in COPD patients with frequent exacerbations. Telemed J E Health. 2012;18(10):772–776. doi:10.1089/tmj.2012.0005
  • Antoniades Nc, Rochford PD, Pretto JJ, et al. Pilot study of remote telemonitoring in COPD. Telemed J E Health. 2012;18(8):634–640. doi:10.1089/tmj.2011.0231
  • Fairbrother P, Pinnock H, Hanley J, et al. Exploring telemonitoring and self-management by patients with chronic obstructive pulmonary disease: a qualitative study embedded in a randomized controlled trial. Patient Educ Couns. 2013;93(3):403–410. doi:10.1016/j.pec.2013.04.003
  • Ho TW, Huang CT, Chiu HC, et al. Effectiveness of telemonitoring in patients with chronic obstructive pulmonary disease in Taiwan-a randomized controlled trial. Sci Rep. 2016;6(1):23797. doi:10.1038/srep23797
  • Kim J, Kim S, Kim H, et al. Acceptability of the consumer-centric u-health services for patients with chronic obstructive pulmonary disease. Telemed J E Health. 2012;18(5):329–338. doi:10.1089/tmj.2011.0140
  • McDowell JE, McClean S, FitzGibbon F, Tate S. A randomised clinical trial of the effectiveness of home-based health care with telemonitoring in patients with COPD. J Telemed Telecare. 2015;21(2):80–87. doi:10.1177/1357633X14566575
  • Pedone C, Lelli D. Systematic review of telemonitoring in COPD: an update. Pneumonol Alergol Pol. 2015;83(6):476–484. doi:10.5603/PiAP.2015.0077
  • Reddel HK, Jenkins CR, Partridge MR. Self-management support and other alternatives to reduce the burden of asthma and chronic obstructive pulmonary disease. Int J Tuberc Lung Dis. 2014;18(12):1396–1406. doi:10.5588/ijtld.14.0371
  • Venter A, Burns R, Hefford M, Ehrenberg N. Results of a telehealth-enabled chronic care management service to support people with long-term conditions at home. J Telemed Telecare. 2012;18(3):172–175. doi:10.1258/jtt.2012.SFT112
  • Burton C, Pinnock H, McKinstry B. Changes in telemonitored physiological variables and symptoms prior to exacerbations of chronic obstructive pulmonary disease. J Telemed Telecare. 2015;21(1):29–36. doi:10.1177/1357633X14562733
  • Chatwin M, Hawkins G, Panicchia L, et al. Randomised crossover trial of telemonitoring in chronic respiratory patients (TeleCRAFT trial). Thorax. 2016;71(4):305–311. doi:10.1136/thoraxjnl-2015-207045
  • Vianello A, Fusello M, Gubian L, et al. Home telemonitoring for patients with acute exacerbation of chronic obstructive pulmonary disease: a randomized controlled trial. BMC Pulm Med. 2016;16(1):157. doi:10.1186/s12890-016-0321-2
  • Elwyn G, Hardisty AR, Peirce SC, et al. Detecting deterioration in patients with chronic disease using telemonitoring: navigating the ‘trough of disillusionment’. J Eval Clin Pract. 2012;18(4):896–903. doi:10.1111/j.1365-2753.2011.01701.x
  • Martín-Lesende I, Orruño E, Bilbao A, et al. Impact of telemonitoring home care patients with heart failure or chronic lung disease from primary care on healthcare resource use (the TELBIL study randomised controlled trial). BMC Health Serv Res. 2013;13(1):118. doi:10.1186/1472-6963-13-118
  • Davis C, Bender M, Smith T, Broad J. Feasibility and acute care utilization outcomes of a post-acute transitional telemonitoring program for underserved chronic disease patients. Telemed J E Health. 2015;21(9):705–713. doi:10.1089/tmj.2014.0181
  • Fairbrother P, Pinnock H, Hanley J, et al. Continuity, but at what cost? The impact of telemonitoring COPD on continuities of care: a qualitative study. Prim Care Respir J. 2012;21(3):322–328. doi:10.4104/pcrj.2012.00068
  • Stoddart A, van der Pol M, Pinnock H, et al. Telemonitoring for chronic obstructive pulmonary disease: a cost and cost-utility analysis of a randomised controlled trial. J Telemed Telecare. 2015;21(2):108–118. doi:10.1177/1357633X14566574