119
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

SMAD4 rs10502913 is Significantly Associated with Chronic Obstructive Pulmonary Disease in a Chinese Han Population: A Case-Control Study

ORCID Icon, , , &
Pages 1623-1631 | Published online: 19 Jul 2022

References

  • Lee JM, Kang YR, Park SH, et al. Polymorphisms in interleukin-1B and its receptor antagonist genes and the risk of chronic obstructive pulmonary disease in a Korean population: a case-control study. Respir Med. 2008;102(9):1311–1320. doi:10.1016/j.rmed.2008.03.026
  • Barnes PJ. Chronic obstructive pulmonary disease. N Engl J Med. 2000;343(4):269–280. doi:10.1056/NEJM200007273430407
  • Zhou X, Zhang Y, Zhang Y, et al. LINC01414/LINC00824 genetic polymorphisms in association with the susceptibility of chronic obstructive pulmonary disease. BMC Pulm Med. 2021;21(1):213. doi:10.1186/s12890-021-01579-3
  • Gao SL, Wang YH, Li CY, et al. A highly significant association between Cathepsin S gene polymorphisms rs12068264 and chronic obstructive pulmonary disease susceptibility in Han Chinese population. Biosci Rep. 2018;38(4). doi:10.1042/BSR20180410
  • Shergis JL, Di YM, Zhang AL, et al. Therapeutic potential of Panax ginseng and ginsenosides in the treatment of chronic obstructive pulmonary disease. Complement Ther Med. 2014;22(5):944–953. doi:10.1016/j.ctim.2014.08.006
  • Wang J, Dai N, Cheng DH, et al. STAT3 gene polymorphism in chronic obstructive pulmonary disease. Eur Rev Med Pharmacol Sci. 2020;24(18):9618–9625. doi:10.26355/eurrev_202009_23050
  • Yuan C, Chang D, Lu G, et al. Genetic polymorphism and chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2017;12:1385–1393. doi:10.2147/COPD.S134161
  • Khoury MJ, Beaty TH, Tockman MS, et al. Familial aggregation in chronic obstructive pulmonary disease: use of the loglinear model to analyze intermediate environmental and genetic risk factors. Genet Epidemiol. 1985;2(2):155–166. doi:10.1002/gepi.1370020206
  • Yu S, Xue M, Yan Z, et al. Correlation between TNF-α −308 and +489 gene polymorphism and acute exacerbation of chronic obstructive pulmonary diseases. Biomed Res Int. 2021;2021:6661281. doi:10.1155/2021/6661281
  • Zhao M, Mishra L, Deng CX. The role of TGF-β/SMAD4 signaling in cancer. Int J Biol Sci. 2018;14(2):111–123. doi:10.7150/ijbs.23230
  • Du X, Pan Z, Li Q, et al. SMAD4 feedback regulates the canonical TGF-β signaling pathway to control granulosa cell apoptosis. Cell Death Dis. 2018;9(2):151. doi:10.1038/s41419-017-0205-2
  • Wang Y, Huang HY, Bian GL, et al. A functional variant of SMAD4 enhances thoracic aortic aneurysm and dissection risk through promoting smooth muscle cell apoptosis and proteoglycan degradation. EBioMedicine. 2017;21:197–205. doi:10.1016/j.ebiom.2017.06.022
  • Zhao H, Huang Y, Wang H, et al. Associations of SMAD4 rs10502913 and NLRP3 rs1539019 polymorphisms with risk of coal workers’ pneumoconiosis susceptibility in Chinese Han Population. Pharmgenomics Pers Med. 2022;15:167–175. doi:10.2147/PGPM.S351658
  • Chen S, Cao R, Liu C, et al. Investigation of IL-4, IL-10, and HVEM polymorphisms with esophageal squamous cell carcinoma: a case–control study involving 1929 participants. Biosci Rep. 2020;40(8). doi:10.1042/BSR20193895
  • Meteoukki W, Fodil M, Negaz NA, et al. Association of IL4 rs2070874, FoxP3 rs3761548 Polymorphisms with Keratoconus in Algeria. J Ophthalmic Vis Res. 2021;16(4):558–565. doi:10.18502/jovr.v16i4.9745
  • Cho YA, Kim J. Association of IL4, IL13, and IL4R polymorphisms with gastrointestinal cancer risk: a meta-analysis. J Epidemiol. 2017;27(5):215–220. doi:10.1016/j.je.2016.06.002
  • Fu MR, Conley YP, Axelrod D, et al. Precision assessment of heterogeneity of lymphedema phenotype, genotypes and risk prediction. Breast. 2016;29:231–240. doi:10.1016/j.breast.2016.06.023
  • Zheng JP, Lyu Y, Li RF, et al. Interaction of heat shock protein 70 (HSP70) polymorphisms and occupational hazards increases the risk of hypertension in coke oven workers. Occup Environ Med. 2018;75(11):807–813. doi:10.1136/oemed-2018-105160
  • Chang NC, Yang HL, Dai CY, et al. The association of heat shock protein genetic polymorphisms with age-related hearing impairment in Taiwan. J Otolaryngol Head Neck Surg. 2021;50(1):31. doi:10.1186/s40463-021-00512-2
  • Kohan L, Tabiee O, Sepahi N. HSPA1L and HSPA1B gene polymorphisms and haplotypes are associated with idiopathic male infertility in Iranian population. Eur J Obstet Gynecol Reprod Biol. 2019;240:57–61. doi:10.1016/j.ejogrb.2019.06.014
  • Aquino-Gálvez A, González-ávila G, Pérez-Rodríguez M, et al. Analysis of heat shock protein 70 gene polymorphisms Mexican patients with idiopathic pulmonary fibrosis. BMC Pulm Med. 2015;15:129. doi:10.1186/s12890-015-0127-7
  • Almutairi M, Almutairi B, Almutairi M, et al. Human beta-defensin-1 rs2738047 polymorphism is associated with shisha smoking risk among Saudi population. Environ Sci Pollut Res Int. 2021;28(1):1–18. doi:10.1007/s11356-020-11060-z
  • Gao X, Wang X, Jiao N, et al. Association of VEGFA polymorphisms with chronic obstructive pulmonary disease in Chinese Han and Mongolian populations. Exp Physiol. 2021;106(8):1839–1848. doi:10.1113/EP089523
  • Faiz A, Rathnayake SNH, Ten HNHT, et al. Single-nucleotide polymorphism rs2070600 regulates AGER splicing and the sputum levels of the COPD biomarker soluble receptor for advanced glycation end-products. ERJ Open Res. 2021;7(2). doi: 10.1183/23120541.00947-2020.
  • Du Y, Zhang H, Xu Y, et al. Association among genetic polymorphisms of GSTP1, HO-1, and SOD-3 and chronic obstructive pulmonary disease susceptibility. Int J Chron Obstruct Pulmon Dis. 2019;14:2081–2088. doi:10.2147/COPD.S213364
  • Bchir S, Boumiza S, Ben Nasr H, et al. Impact of cathepsin D activity and C224T polymorphism (rs17571) on chronic obstructive pulmonary disease: correlations with oxidative and inflammatory markers. Clin Exp Med. 2021;21(3):457–465. doi:10.1007/s10238-021-00692-1
  • Lin C, Wang Z, Shen L, et al. Genetic variants, circulating level of MCP1 with risk of chronic obstructive pulmonary disease: a case-control study. Pharmgenomics Pers Med. 2021;14:561–567. doi:10.2147/PGPM.S303799
  • Xu J, de Oliveira DM, Trudeau MA, et al. Mild catalytic defects of tert rs61748181 polymorphism affect the clinical presentation of chronic obstructive pulmonary disease. Sci Rep. 2021;11(1):4333. doi:10.1038/s41598-021-83686-z
  • Ding Y, Li Q, Feng Q. CYP2B6 genetic polymorphisms influence chronic obstructive pulmonary disease susceptibility in the Hainan population. Int J Chron Obstruct Pulmon Dis. 2019;14:2103–2115. doi:10.2147/COPD.S214961
  • Korytina GF, Tselousova OS, Akhmadishina LZ, et al. Association of the MMP3, MMP9, ADAM33 and TIMP3 genes polymorphic markers with development and progression of chronic obstructive pulmonary disease. Mol Biol. 2012;46(3):487–499. doi:10.1134/S0026893312020082
  • Ding Y, Yang D, Xun X. Association of genetic polymorphisms with chronic obstructive pulmonary disease in the Hainan population: a case-control study. Int J Chron Obstruct Pulmon Dis. 2015;10:7–13. doi:10.2147/COPD.S73042
  • Wang LH, Kim SH, Lee JH, et al. Inactivation of SMAD4 tumor suppressor gene during gastric carcinoma progression. Clin Cancer Res. 2007;13(1):102–110. doi:10.1158/1078-0432.CCR-06-1467
  • Slattery ML, Lundgreen A, Herrick JS, et al. Associations between genetic variation in RUNX1, RUNX2, RUNX3, MAPK1 and eIF4E and risk of colon and rectal cancer: additional support for a TGF-β-signaling pathway. Carcinogenesis. 2011;32(3):318–326. doi:10.1093/carcin/bgq245
  • Wosiak A, Wodziński D, Michalska K, et al. Assessment of the role of selected SMAD3 and SMAD4 genes polymorphisms in the development of colorectal cancer: preliminary research. Pharmgenomics Pers Med. 2021;14:167–178. doi:10.2147/PGPM.S281958
  • Pasquale LR, Loomis SJ, Aschard H, et al. Exploring genome-wide - dietary heme iron intake interactions and the risk of type 2 diabetes. Front Genet. 2013;4:7. doi:10.3389/fgene.2013.00007