503
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

From COPD to Lung Cancer: Mechanisms Linking, Diagnosis, Treatment, and Prognosis

, & ORCID Icon
Pages 2603-2621 | Received 08 Jul 2022, Accepted 30 Sep 2022, Published online: 17 Oct 2022

References

  • Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33. doi:10.3322/caac.21654
  • Wasswa-Kintu S, Gan WQ, Man SF, Pare PD, Sin DD. Relationship between reduced forced expiratory volume in one second and the risk of lung cancer: a systematic review and meta-analysis. Thorax. 2005;60(7):570–575. doi:10.1136/thx.2004.037135
  • Skillrud DM, Offord KP, Miller RD. Higher risk of lung cancer in chronic obstructive pulmonary disease. A prospective, matched, controlled study. Ann Intern Med. 1986;105(4):503–507. doi:10.7326/0003-4819-105-4-503
  • Huang R, Wei Y, Hung RJ, et al. Associated links among smoking, chronic obstructive pulmonary disease, and small cell lung cancer: a pooled analysis in the international lung cancer consortium. EBioMedicine. 2015;2(11):1677–1685. doi:10.1016/j.ebiom.2015.09.031
  • Carr LL, Jacobson S, Lynch DA, et al. Features of COPD as predictors of lung cancer. Chest. 2018;153(6):1326–1335. doi:10.1016/j.chest.2018.01.049
  • de Torres JP, Marín JM, Casanova C, et al. Lung cancer in patients with chronic obstructive pulmonary disease– incidence and predicting factors. Am J Respir Crit Care Med. 2011;184(8):913–919. doi:10.1164/rccm.201103-0430OC
  • Zhang R, Tan X, Chen Q, et al. 胸外科住院肺癌合并慢性阻塞性肺疾病的调查结果分析 [Investigation of lung cancer patients complicated with chronic obstructive pulmonary disease in thoracic surgical department]. Zhongguo Fei Ai Za Zhi. 2017;20(3):163–167. Chinese. doi:10.3779/j.issn.1009-3419.2017.03.04
  • Barnes PJ. Endo-phenotyping of COPD patients. Expert Rev Respir Med. 2021;15(1):27–37. doi:10.1080/17476348.2020.1804364
  • Couillard S, Larivée P, Courteau J, Vanasse A. Eosinophils in COPD exacerbations are associated with increased readmissions. Chest. 2017;151(2):366–373. doi:10.1016/j.chest.2016.10.003
  • Ho J, He W, Chan MTV, et al. Eosinophilia and clinical outcome of chronic obstructive pulmonary disease: a meta-analysis. Sci Rep. 2017;7(1):13451. doi:10.1038/s41598-017-13745-x
  • Wilson DO, Weissfeld JL, Balkan A, et al. Association of radiographic emphysema and airflow obstruction with lung cancer. Am J Respir Crit Care Med. 2008;178(7):738–744. doi:10.1164/rccm.200803-435OC
  • Hohberger LA, Schroeder DR, Bartholmai BJ, et al. Correlation of regional emphysema and lung cancer: a lung tissue research consortium-based study. J Thorac Oncol. 2014;9(5):639–645. doi:10.1097/jto.0000000000000144
  • Bae K, Jeon KN, Lee SJ, et al. Severity of pulmonary emphysema and lung cancer: analysis using quantitative lobar emphysema scoring. Medicine. 2016;95(48):e5494. doi:10.1097/MD.0000000000005494
  • Tubío-Pérez RA, Torres-Durán M, Pérez-Ríos M, Fernández-Villar A, Ruano-Raviña A. Lung emphysema and lung cancer: what do we know about it? Ann Transl Med. 2020;8(21):1471. doi:10.21037/atm-20-1180
  • Mouronte-Roibás C, Fernández-Villar A, Ruano-Raviña A, et al. Influence of the type of emphysema in the relationship between COPD and lung cancer. Int J Chron Obstruct Pulmon Dis. 2018;13:3563–3570. doi:10.2147/copd.S178109
  • González J, Henschke CI, Yankelevitz DF, et al. Emphysema phenotypes and lung cancer risk. PLoS One. 2019;14(7):e0219187. doi:10.1371/journal.pone.0219187
  • Madan R, Matalon S, Vivero M. Spectrum of smoking-related lung diseases: imaging review and update. J Thorac Imaging. 2016;31(2):78–91. doi:10.1097/rti.0000000000000185
  • Chen AF, Davies CM, De Lin M, Fermor B. Oxidative DNA damage in osteoarthritic porcine articular cartilage. J Cell Physiol. 2008;217(3):828–833. doi:10.1002/jcp.21562
  • Donohue JF. Ageing, smoking and oxidative stress. Thorax. 2006;61(6):461–462. doi:10.1136/thx.2005.053058
  • Yarahmadi A, Zal F, Bolouki A. Protective effects of quercetin on nicotine induced oxidative stress in ‘HepG2 cells’. Toxicol Mech Methods. 2017;27(8):609–614. doi:10.1080/15376516.2017.1344338
  • Dialyna IA, Miyakis S, Georgatou N, Spandidos DA. Genetic polymorphisms of CYP1A1, GSTM1 and GSTT1 genes and lung cancer risk. Oncol Rep. 2003;10(6):1829–1835.
  • Ziolkowska-Suchanek I, Mosor M, Gabryel P, et al. Susceptibility loci in lung cancer and COPD: association of IREB2 and FAM13A with pulmonary diseases. Sci Rep. 2015;5:13502. doi:10.1038/srep13502
  • Ji X, Bosse Y, Landi MT, et al. Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk. Nat Commun. 2018;9(1):3221. doi:10.1038/s41467-018-05074-y
  • Bjorngaard JH, Nordestgaard AT, Taylor AE, et al. Heavier smoking increases coffee consumption: findings from a Mendelian randomization analysis. Int J Epidemiol. 2017;46(6):1958–1967. doi:10.1093/ije/dyx147
  • Ji X, Gui J, Han Y, et al. The role of haplotype in 15q25.1 locus in lung cancer risk: results of scanning chromosome 15. Carcinogenesis. 2015;36(11):1275–1283. doi:10.1093/carcin/bgv118
  • Sundar IK, Mullapudi N, Yao H, Spivack SD, Rahman I. Lung cancer and its association with chronic obstructive pulmonary disease: update on nexus of epigenetics. Curr Opin Pulm Med. 2011;17(4):279–285. doi:10.1097/MCP.0b013e3283477533
  • Watza D, Lusk CM, Dyson G, et al. COPD-dependent effects of genetic variation in key inflammation pathway genes on lung cancer risk. Int J Cancer. 2020;147(3):747–756. doi:10.1002/ijc.32780
  • Houghton AM. Mechanistic links between COPD and lung cancer. Nat Rev Cancer. 2013;13(4):233–245. doi:10.1038/nrc3477
  • Parris BA, O’Farrell HE, Fong KM, Yang IA. Chronic obstructive pulmonary disease (COPD) and lung cancer: common pathways for pathogenesis. J Thorac Dis. 2019;11(Suppl 17):S2155–s2172. doi:10.21037/jtd.2019.10.54
  • Wauters E, Janssens W, Vansteenkiste J, et al. DNA methylation profiling of non-small cell lung cancer reveals a COPD-driven immune-related signature. Thorax. 2015;70(12):1113–1122. doi:10.1136/thoraxjnl-2015-207288
  • Durham AL, Adcock IM. The relationship between COPD and lung cancer. Lung Cancer. 2015;90(2):121–127. doi:10.1016/j.lungcan.2015.08.017
  • Kapranov P, Cheng J, Dike S, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007;316(5830):1484–1488. doi:10.1126/science.1138341
  • Devadoss D, Long C, Langley RJ, et al. Long noncoding transcriptome in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2019;61(6):678–688. doi:10.1165/rcmb.2019-0184TR
  • Jia M, Yao X. Epigenetic links to airway smooth muscle proliferation. Am J Respir Cell Mol Biol. 2019;61(5):552–553. doi:10.1165/rcmb.2019-0149ed
  • Greco S, Gaetano C, Martelli F. Long noncoding competing endogenous RNA networks in age-associated cardiovascular diseases. Int J Mol Sci. 2019;20(12):3079. doi:10.3390/ijms20123079
  • Gao S, Lin H, Yu W, et al. LncRNA LCPAT1 is involved in DNA damage induced by CSE. Biochem Biophys Res Commun. 2019;508(2):512–515. doi:10.1016/j.bbrc.2018.11.171
  • Mahmood MQ, Ward C, Muller HK, Sohal SS, Walters EH. Epithelial mesenchymal transition (EMT) and non-small cell lung cancer (NSCLC): a mutual association with airway disease. Med Oncol. 2017;34(3):45. doi:10.1007/s12032-017-0900-y
  • Huang RY, Wong MK, Tan TZ, et al. An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530). Cell Death Dis. 2013;4(11):e915. doi:10.1038/cddis.2013.442
  • Jolly MK, Ward C, Eapen MS, et al. Epithelial-mesenchymal transition, a spectrum of states: role in lung development, homeostasis, and disease. Dev Dyn. 2018;247(3):346–358. doi:10.1002/dvdy.24541
  • Jolly MK, Boareto M, Huang B, et al. Implications of the hybrid epithelial/mesenchymal phenotype in metastasis. Front Oncol. 2015;5:155. doi:10.3389/fonc.2015.00155
  • Bocci F, Jolly MK, Tripathi SC, et al. Numb prevents a complete epithelial-mesenchymal transition by modulating Notch signalling. J R Soc Interface. 2017;14(136):20170512. doi:10.1098/rsif.2017.0512
  • Jolly MK, Boareto M, Debeb BG, et al. Inflammatory breast cancer: a model for investigating cluster-based dissemination. NPJ Breast Cancer. 2017;3:21. doi:10.1038/s41523-017-0023-9
  • Eapen MS, Myers S, Lu W, Tanghe C, Sharma P, Sohal SS. sE-cadherin and sVE-cadherin indicate active epithelial/endothelial to mesenchymal transition (EMT and EndoMT) in smokers and COPD: implications for new biomarkers and therapeutics. Biomarkers. 2018;23(7):709–711. doi:10.1080/1354750X.2018.1479772
  • Gurzu S, Turdean S, Kovecsi A, Contac AO, Jung I. Epithelial-mesenchymal, mesenchymal-epithelial, and endothelial-mesenchymal transitions in malignant tumors: an update. World J Clin Cases. 2015;3(5):393–404. doi:10.12998/wjcc.v3.i5.393
  • Ge F, Feng Y, Huo Z, et al. Inhaled corticosteroids and risk of lung cancer among chronic obstructive pulmonary disease patients: a comprehensive analysis of nine prospective cohorts. Transl Lung Cancer Res. 2021;10(3):1266–1276. doi:10.21037/tlcr-20-1126
  • Eapen MS, Hansbro PM, Larsson-Callerfelt AK, et al. Chronic obstructive pulmonary disease and lung cancer: underlying pathophysiology and new therapeutic modalities. Drugs. 2018;78(16):1717–1740. doi:10.1007/s40265-018-1001-8
  • Brody JS, Spira A. State of the art. Chronic obstructive pulmonary disease, inflammation, and lung cancer. Proc Am Thorac Soc. 2006;3(6):535–537. doi:10.1513/pats.200603-089MS
  • Mei J, Xiao Z, Guo C, et al. Prognostic impact of tumor-associated macrophage infiltration in non-small cell lung cancer: a systemic review and meta-analysis. Oncotarget. 2016;7(23):34217–34228. doi:10.18632/oncotarget.9079
  • Eapen MS, Hansbro PM, McAlinden K, et al. Abnormal M1/M2 macrophage phenotype profiles in the small airway wall and lumen in smokers and chronic obstructive pulmonary disease (COPD). Sci Rep. 2017;7(1):13392. doi:10.1038/s41598-017-13888-x
  • Almatroodi SA, McDonald CF, Darby IA, Pouniotis DS. Characterization of M1/M2 tumour-associated macrophages (TAMs) and Th1/Th2 cytokine profiles in patients with NSCLC. Cancer Microenviron. 2016;9(1):1–11. doi:10.1007/s12307-015-0174-x
  • Wang LE, Gorlova OY, Ying J, et al. Genome-wide association study reveals novel genetic determinants of DNA repair capacity in lung cancer. Cancer Res. 2013;73(1):256–264. doi:10.1158/0008-5472.Can-12-1915
  • Morlá M, Busquets X, Pons J, Sauleda J, MacNee W, Agustí AG. Telomere shortening in smokers with and without COPD. Eur Respir J. 2006;27(3):525–528. doi:10.1183/09031936.06.00087005
  • Ceylan E, Kocyigit A, Gencer M, Aksoy N, Selek S. Increased DNA damage in patients with chronic obstructive pulmonary disease who had once smoked or been exposed to biomass. Respir Med. 2006;100(7):1270–1276. doi:10.1016/j.rmed.2005.10.011
  • Schreck R, Albermann K, Baeuerle PA. Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic Res Commun. 1992;17(4):221–237. doi:10.3109/10715769209079515
  • Kirkham PA, Caramori G, Casolari P, et al. Oxidative stress-induced antibodies to carbonyl-modified protein correlate with severity of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;184(7):796–802. doi:10.1164/rccm.201010-1605OC
  • Osoata GO, Yamamura S, Ito M, et al. Nitration of distinct tyrosine residues causes inactivation of histone deacetylase 2. Biochem Biophys Res Commun. 2009;384(3):366–371. doi:10.1016/j.bbrc.2009.04.128
  • Whipple CA. Tumor talk: understanding the conversation between the tumor and its microenvironment. Cancer Cell Microenviron. 2015;2(2):e773. doi:10.14800/ccm.773
  • Murakami J, Ueda K, Sano F, Hayashi M, Nishimoto A, Hamano K. Pulmonary emphysema and tumor microenvironment in primary lung cancer. J Surg Res. 2016;200(2):690–697. doi:10.1016/j.jss.2015.09.004
  • Mocchegiani E, Giacconi R, Costarelli L. Metalloproteases/anti-metalloproteases imbalance in chronic obstructive pulmonary disease: genetic factors and treatment implications. Curr Opin Pulm Med. 2011;17:S11–9. doi:10.1097/01.mcp.0000410743.98087.12
  • Hallgren O, Nihlberg K, Dahlbäck M, et al. Altered fibroblast proteoglycan production in COPD. Respir Res. 2010;11(1):55. doi:10.1186/1465-9921-11-55
  • Burgess JK, Mauad T, Tjin G, Karlsson JC, Westergren-Thorsson G. The extracellular matrix - the under-recognized element in lung disease? J Pathol. 2016;240(4):397–409. doi:10.1002/path.4808
  • Yang P, Sun Z, Krowka MJ, et al. Alpha1-antitrypsin deficiency carriers, tobacco smoke, chronic obstructive pulmonary disease, and lung cancer risk. Arch Intern Med. 2008;168(10):1097–1103. doi:10.1001/archinte.168.10.1097
  • Wu K, Xing F, Wu SY, Watabe K. Extracellular vesicles as emerging targets in cancer: recent development from bench to bedside. Biochim Biophys Acta Rev Cancer. 2017;1868(2):538–563. doi:10.1016/j.bbcan.2017.10.001
  • McCready J, Sims JD, Chan D, Jay DG. Secretion of extracellular hsp90alpha via exosomes increases cancer cell motility: a role for plasminogen activation. BMC Cancer. 2010;10:294. doi:10.1186/1471-2407-10-294
  • Zaravinos A. The regulatory role of MicroRNAs in EMT and cancer. J Oncol. 2015;2015:865816. doi:10.1155/2015/865816
  • Mongroo PS, Rustgi AK. The role of the miR-200 family in epithelial-mesenchymal transition. Cancer Biol Ther. 2010;10(3):219–222. doi:10.4161/cbt.10.3.12548
  • Silvestri GA, Young RP. Strange bedfellows: the interaction between COPD and lung cancer in the context of lung cancer screening. Ann Am Thorac Soc. 2020;17(7):810–812. doi:10.1513/AnnalsATS.202005-433ED
  • Park HY, Kang D, Shin SH, et al. Pulmonary tuberculosis and the incidence of lung cancer among patients with chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2022;19(4):640–648. doi:10.1513/AnnalsATS.202010-1240OC
  • Young RP, Hopkins RJ. Chronic obstructive pulmonary disease (COPD) and lung cancer screening. Transl Lung Cancer Res. 2018;7(3):347–360. doi:10.21037/tlcr.2018.05.04
  • Detterbeck FC, Mazzone PJ, Naidich DP, Bach PB. Screening for lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5Suppl):e78S–e92S. doi:10.1378/chest.12-2350
  • Wender R, Fontham ET, Barrera E, et al. American Cancer Society lung cancer screening guidelines. CA Cancer J Clin. 2013;63(2):107–117. doi:10.3322/caac.21172
  • Jaklitsch MT, Jacobson FL, Austin JH, et al. The American Association for Thoracic Surgery guidelines for lung cancer screening using low-dose computed tomography scans for lung cancer survivors and other high-risk groups. J Thorac Cardiovasc Surg. 2012;144(1):33–38. doi:10.1016/j.jtcvs.2012.05.060
  • Wood DE, Kazerooni E, Baum SL, et al. Lung cancer screening, version 1.2015: featured updates to the NCCN guidelines. J Natl Compr Canc Netw. 2015;13(1):23–34;quiz 34. doi:10.6004/jnccn.2015.0006
  • De-torres JP, Wilson DO, Sanchez-Salcedo P, et al. Lung cancer in patients with chronic obstructive pulmonary disease. Development and validation of the COPD lung cancer screening score. Am J Respir Crit Care Med. 2015;191(3):285–291. doi:10.1164/rccm.201407-1210OC
  • De-torres JP, Marín JM, Casanova C, et al. Identification of COPD patients at high risk for lung cancer mortality using the COPD-LUCSS-DLCO. Chest. 2016;149(4):936–942. doi:10.1378/chest.15-1868
  • Figueira Gonçalves JM, Pérez Mendez LI, Gurbani N, García-Talavera I, Pérez Pinilla JL. Applicability of the COPD-LUCSS-DLCO score for patients with chronic obstructive pulmonary disease: analysis in standard clinical practice conditions. Rev Clin Esp. 2018;218(7):336–341. Aplicabilidad del score COPD-LUCSS-DLCO en pacientes con enfermedad pulmonar obstructiva crónica: análisis en condiciones de práctica clínica habitual. doi:10.1016/j.rce.2018.04.008
  • Ji JJ, Fan J. Discovering myeloid cell heterogeneity in the lung by means of next generation sequencing. Mil Med Res. 2019;6(1):33. doi:10.1186/s40779-019-0222-9
  • Obeidat M, Nie Y, Fishbane N, et al. Integrative genomics of emphysema-associated genes reveals potential disease biomarkers. Am J Respir Cell Mol Biol. 2017;57(4):411–418. doi:10.1165/rcmb.2016-0284OC
  • Keller A, Fehlmann T, Ludwig N, et al. Genome-wide MicroRNA expression profiles in COPD: early predictors for cancer development. Genomics Proteomics Bioinformatics. 2018;16(3):162–171. doi:10.1016/j.gpb.2018.06.001
  • Liang W, Zhao Y, Huang W, et al. Non-invasive diagnosis of early-stage lung cancer using high-throughput targeted DNA methylation sequencing of circulating tumor DNA (ctDNA). Theranostics. 2019;9(7):2056–2070. doi:10.7150/thno.28119
  • Su Z, Wang Z, Ni X, et al. Inferring the evolution and progression of small-cell lung cancer by single-cell sequencing of circulating tumor cells. Clin Cancer Res. 2019;25(16):5049–5060. doi:10.1158/1078-0432.Ccr-18-3571
  • Abbosh C, Birkbak NJ, Wilson GA, et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. 2017;545(7655):446–451. doi:10.1038/nature22364
  • Hu J, Wang Y, Zhang Y, et al. Comprehensive genomic profiling of small cell lung cancer in Chinese patients and the implications for therapeutic potential. Cancer Med. 2019;8(9):4338–4347. doi:10.1002/cam4.2199
  • Pavel AB, Campbell JD, Liu G, et al. Alterations in bronchial airway miRNA expression for lung cancer detection. Cancer Prev Res. 2017;10(11):651–659. doi:10.1158/1940-6207.Capr-17-0098
  • Licht JC, Grasemann H. Potential of the electronic nose for the detection of respiratory diseases with and without infection. Int J Mol Sci. 2020;21(24):9416. doi:10.3390/ijms21249416
  • Subramoniam M, Mathew L, Mathew L, et al. Noninvasive detection of COPD and lung cancer through breath analysis using MOS sensor array based e-nose. Expert Rev Mol Diagn. 2021;21(11):1223–1233. doi:10.1080/14737159.2021.1971079
  • Krauss E, Haberer J, Barreto G, Degen M, Seeger W, Guenther A. Recognition of breathprints of lung cancer and chronic obstructive pulmonary disease using the Aeonose((R)) electronic nose. J Breath Res. 2020;14(4):046004. doi:10.1088/1752-7163/ab8c50
  • López-Encuentra A, Astudillo J, Cerezal J, Gonzalez-Aragoneses F, Novoa N, Sánchez-Palencia A. Prognostic value of chronic obstructive pulmonary disease in 2994 cases of lung cancer. Eur J Cardiothorac Surg. 2005;27(1):8–13. doi:10.1016/j.ejcts.2004.09.010
  • Yi YS, Ban WH, Sohng KY. Effect of COPD on symptoms, quality of life and prognosis in patients with advanced non-small cell lung cancer. BMC Cancer. 2018;18(1):1053. doi:10.1186/s12885-018-4976-3
  • Mouronte-Roibás C, Leiro-Fernández V, Ruano-Raviña A, et al. Chronic obstructive pulmonary disease in lung cancer patients: prevalence, underdiagnosis, and clinical characterization. Respiration. 2018;95(6):414–421. doi:10.1159/000487243
  • Wang W, Dou S, Dong W, et al. Impact of COPD on prognosis of lung cancer: from a perspective on disease heterogeneity. Int J Chron Obstruct Pulmon Dis. 2018;13:3767–3776. doi:10.2147/COPD.S168048
  • Lim JU, Kang HS, Yeo CD, et al. Impact of combined chronic obstructive pulmonary disease status and systemic inflammation on outcome of advanced NSCLC: multicenter retrospective cohort study. Int J Chron Obstruct Pulmon Dis. 2020;15:3323–3334. doi:10.2147/copd.S274354
  • Dong W, Zhu Y, Du Y, Wang L, Feng X, Ma S. Impact of severe-to-very severe chronic obstructive pulmonary disease on the prognosis of patients with non-small cell lung cancer who received chemotherapy. Clin Respir J. 2020;14(4):345–352. doi:10.1111/crj.13139
  • Morimoto M, Nishino K, Wada K, et al. Elective nodal irradiation for non-small cell lung cancer complicated with chronic obstructive pulmonary disease affects immunotherapy αfter definitive chemoradiotherapy. Anticancer Res. 2020;40(12):6957–6970. doi:10.21873/anticanres.14720
  • Chun SG, Hu C, Choy H, et al. Impact of intensity-modulated radiation therapy technique for locally advanced non-small-cell lung cancer: a secondary analysis of the NRG oncology RTOG 0617 randomized clinical trial. J Clin Oncol. 2017;35(1):56–62. doi:10.1200/jco.2016.69.1378
  • Verma V, Shostrom VK, Zhen W, et al. Influence of fractionation scheme and tumor location on toxicities after stereotactic body radiation therapy for large (≥5 cm) non-small cell lung cancer: a multi-institutional analysis. Int J Radiat Oncol Biol Phys. 2017;97(4):778–785. doi:10.1016/j.ijrobp.2016.11.049
  • Wang J, Cao J, Yuan S, et al. Poor baseline pulmonary function may not increase the risk of radiation-induced lung toxicity. Int J Radiat Oncol Biol Phys. 2013;85(3):798–804. doi:10.1016/j.ijrobp.2012.06.040
  • Henkenberens C, Janssen S, Lavae-Mokhtari M, et al. Inhalative steroids as an individual treatment in symptomatic lung cancer patients with radiation pneumonitis grade II after radiotherapy - a single-centre experience. Radiat Oncol. 2016;11:12. doi:10.1186/s13014-016-0580-3
  • McKendry RT, Spalluto CM, Burke H, et al. Dysregulation of antiviral function of CD8(+) T cells in the chronic obstructive pulmonary disease lung. Role of the PD-1-PD-L1 axis. Am J Respir Crit Care Med. 2016;193(6):642–651. doi:10.1164/rccm.201504-0782OC
  • Mark NM, Kargl J, Busch SE, et al. Chronic obstructive pulmonary disease alters immune cell composition and immune checkpoint inhibitor efficacy in non-small cell lung cancer. Am J Respir Crit Care Med. 2018;197(3):325–336. doi:10.1164/rccm.201704-0795OC
  • Suzuki Y, Inui N, Karayama M, et al. Effect of PD-1 inhibitor on exhaled nitric oxide and pulmonary function in non-small cell lung cancer patients with and without COPD. Int J Chron Obstruct Pulmon Dis. 2019;14:1867–1877. doi:10.2147/copd.S214610
  • Dubinett SM, Spira AE. Impact of chronic obstructive pulmonary disease on immune-based treatment for lung cancer. Moving toward disease interception. Am J Respir Crit Care Med. 2018;197(3):278–280. doi:10.1164/rccm.201710-2065ED
  • Zhou J, Chao Y, Yao D, et al. Impact of chronic obstructive pulmonary disease on immune checkpoint inhibitor efficacy in advanced lung cancer and the potential prognostic factors. Transl Lung Cancer Res. 2021;10(5):2148–2162. doi:10.21037/tlcr-21-214
  • Shin SH, Park HY, Im Y, et al. Improved treatment outcome of pembrolizumab in patients with nonsmall cell lung cancer and chronic obstructive pulmonary disease. Int J Cancer. 2019;145(9):2433–2439. doi:10.1002/ijc.32235
  • Nair VS, Eaton K, McGarry Houghton A. A case series of morbid COPD exacerbations during immune checkpoint inhibitor therapy in cancer patients. Respir Med Case Rep. 2021;34:101541. doi:10.1016/j.rmcr.2021.101541
  • Biton J, Ouakrim H, Dechartres A, et al. Impaired tumor-infiltrating T cells in patients with chronic obstructive pulmonary disease impact lung cancer response to PD-1 blockade. Am J Respir Crit Care Med. 2018;198(7):928–940. doi:10.1164/rccm.201706-1110OC
  • Kiri VA, Fabbri LM, Davis KJ, Soriano JB. Inhaled corticosteroids and risk of lung cancer among COPD patients who quit smoking. Respir Med. 2009;103(1):85–90. doi:10.1016/j.rmed.2008.07.024
  • Wu MF, Jian ZH, Huang JY, et al. Post-inhaled corticosteroid pulmonary tuberculosis and pneumonia increases lung cancer in patients with COPD. BMC Cancer. 2016;16(1):778. doi:10.1186/s12885-016-2838-4
  • Makino T, Otsuka H, Hata Y, et al. Long-acting muscarinic antagonist and long-acting beta2-agonist therapy to optimize chronic obstructive pulmonary disease prior to lung cancer surgery. Mol Clin Oncol. 2018;8(5):647–652. doi:10.3892/mco.2018.1595
  • Bölükbas S, Eberlein M, Eckhoff J, Schirren J. Short-term effects of inhalative tiotropium/formoterol/budenoside versus tiotropium/formoterol in patients with newly diagnosed chronic obstructive pulmonary disease requiring surgery for lung cancer: a prospective randomized trial. Eur J Cardiothorac Surg. 2011;39(6):995–1000. doi:10.1016/j.ejcts.2010.09.025
  • Kerksick C, Willoughby D. The antioxidant role of glutathione and N-acetyl-cysteine supplements and exercise-induced oxidative stress. J Int Soc Sports Nutr. 2005;2(2):38–44. doi:10.1186/1550-2783-2-2-38
  • Goebel C, Louden CL, McKenna R, Onugha O, Wachtel A, Long T. Blood test shows high accuracy in detecting stage I non-small cell lung cancer. BMC Cancer. 2020;20(1):137. doi:10.1186/s12885-020-6625-x
  • Batth IS, Mitra A, Manier S, et al. Circulating tumor markers: harmonizing the yin and yang of CTCs and ctDNA for precision medicine. Ann Oncol. 2017;28(3):468–477. doi:10.1093/annonc/mdw619
  • Pailler E, Faugeroux V, Oulhen M, et al. Acquired resistance mutations to ALK inhibitors identified by single circulating tumor cell sequencing in ALK-rearranged non-small-cell lung cancer. Clin Cancer Res. 2019;25(22):6671–6682. doi:10.1158/1078-0432.Ccr-19-1176
  • Pak S, Suh YS, Lee DE, et al. Association between postoperative detection of circulating tumor cells and recurrence in patients with prostate cancer. J Urol. 2020;203(6):1128–1134. doi:10.1097/JU.0000000000000704
  • Bayarri-Lara C, Ortega FG, Cueto Ladrón de Guevara A, et al. Circulating tumor cells identify early recurrence in patients with non-small cell lung cancer undergoing radical resection. PLoS One. 2016;11(2):e0148659. doi:10.1371/journal.pone.0148659
  • Hofman V, Ilie MI, Long E, et al. Detection of circulating tumor cells as a prognostic factor in patients undergoing radical surgery for non-small-cell lung carcinoma: comparison of the efficacy of the CellSearch Assay™ and the isolation by size of epithelial tumor cell method. Int J Cancer. 2011;129(7):1651–1660. doi:10.1002/ijc.25819
  • Lee CH, Hyun MK, Jang EJ, Lee NR, Kim K, Yim JJ. Inhaled corticosteroid use and risks of lung cancer and laryngeal cancer. Respir Med. 2013;107(8):1222–1233. doi:10.1016/j.rmed.2012.12.002