446
Views
7
CrossRef citations to date
0
Altmetric
REVIEW

The Role of Glucagon-Like Peptide-1 Receptor Agonists in Chronic Obstructive Pulmonary Disease

, , , , , , , , , & ORCID Icon show all
Pages 129-137 | Received 13 Oct 2022, Accepted 02 Feb 2023, Published online: 15 Feb 2023

References

  • Adeloye D, Song P, Zhu Y, et al. Global, regional, and national prevalence of, and risk factors for, chronic obstructive pulmonary disease (COPD) in 2019: a systematic review and modelling analysis. Lancet Respir Med. 2022;10(5):447–458. doi:10.1016/S2213-2600(21)00511-7
  • Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. GOLD website; 2022.
  • Castañ-Abad MT, Godoy P, Bertran S, Montserrat-Capdevila J, Ortega M. Incidencia de exacerbación grave en pacientes codiagnosticados de diabetes y enfermedad pulmonar obstructiva crónica: estudio de cohorte [Incidence of severe exacerbation in patients diagnosed with diabetes and chronic obstructive pulmonary disease: Cohort study]. Aten Primaria. 2021;53(8):102074. doi:10.1016/j.aprim.2021.102074
  • Kolahian S, Leiss V, Nürnberg B. Diabetic lung disease: fact or fiction? Rev Endocr Metab Disord. 2019;20(3):303–319. doi:10.1007/s11154-019-09516-w
  • Cazzola M, Bettoncelli G, Sessa E, Cricelli C, Biscione G. Prevalence of comorbidities in patients with chronic obstructive pulmonary disease. Respiration. 2010;80(2):112–119. doi:10.1159/000281880
  • Castañ-Abad MT, Montserrat-Capdevila J, Godoy P, et al. Diabetes as a risk factor for severe exacerbation and death in patients with COPD: a prospective cohort study. Eur J Public Health. 2020;30(4):822–827. doi:10.1093/eurpub/ckz219
  • Cazzola M, Rogliani P, Calzetta L, Lauro D, Page C, Matera MG. Targeting mechanisms linking COPD to type 2 diabetes mellitus. Trends Pharmacol Sci. 2017;38(10):940–951. doi:10.1016/j.tips.2017.07.003
  • Graaf CD, Donnelly D, Wootten D, et al. Glucagon-like peptide-1 and its class B G protein–coupled receptors: a long march to therapeutic successes. Pharmacol Rev. 2016;68(4):954–1013. doi:10.1124/pr.115.011395
  • Korner M, Stockli M, Waser B, Reubi JC. GLP-1 receptor expression in human tumors and human normal tissues: potential for in vivo targeting. J Nucl Med. 2007;48(5):736–743. doi:10.2967/jnumed.106.038679
  • Viby N, Isidor MS, Buggeskov KB, Poulsen SS, Hansen JB, Kissow H. Glucagon-Like Peptide-1 (GLP-1) reduces mortality and improves lung function in a model of experimental obstructive lung disease in female mice. Endocrinology. 2013;154(12):4503–4511. doi:10.1210/en.2013-1666
  • Lee Y, Jun H. Anti-inflammatory effects of GLP-1-based therapies beyond glucose control. Mediators Inflamm. 2016;2016:1–11.
  • Chun JH, Butts A. Long-acting GLP-1RAs: an overview of efficacy, safety, and their role in type 2 diabetes management. J Am Acad Physician Assist. 2020;33(S8):3–18. doi:10.1097/01.JAA.0000669456.13763.bd
  • Soriano JB, Polverino F, Cosio BG. What is early COPD and why is it important? Eur Respir J. 2018;52(6):1801448. doi:10.1183/13993003.01448-2018
  • O Donnell DE, Milne KM, James MD, de Torres JP, Neder JA. Dyspnea in COPD: new mechanistic insights and management implications. Adv Ther. 2020;37(1):41–60. doi:10.1007/s12325-019-01128-9
  • Wang H, Ye X, Zhang Y, Ling S. Global, regional, and national burden of chronic obstructive pulmonary disease from 1990 to 2019. Front Physiol. 2022;13:1.
  • Guo P, Li R, Piao TH, Wang CL, Wu XL, Cai HY. Pathological mechanism and targeted drugs of COPD. Int J Chron Obstruct. 2022;17:1565–1575.
  • Arellano-Orden E, Calero Acuña C, Sánchez-López V, et al. Cellular mechanisms involved in the pathogenesis of airway remodeling in chronic lung disease. Eur Clin Respir J. 2022;9(1). doi:10.1080/20018525.2022.2097377
  • Marzook A, Tomas A, Jones B. The interplay of glucagon-like peptide-1 receptor trafficking and signaling in pancreatic beta cells. Front Endocrinol. 2021;12. doi:10.3389/fendo.2021.678055
  • Zhao X, Wang M, Wen Z, et al. GLP-1 receptor agonists: beyond their pancreatic effects. Front Endocrinol. 2021;12. doi:10.3389/fendo.2021.721135
  • Joly E, Prentki M, Buteau J, El-Assaad W, Rhodes CJ, Rosenberg L. Glucagon-like peptide-1 prevents beta cell glucolipotoxicity. Diabetologia. 2004;47(5):806–815. doi:10.1007/s00125-004-1379-6
  • Oh Y, Jun H. Effects of glucagon-like peptide-1 on oxidative stress and Nrf2 signaling. Int J Mol Sci. 2018;19(1):26. doi:10.3390/ijms19010026
  • Bendotti G, Montefusco L, Lunati ME, et al. The anti-inflammatory and immunological properties of GLP-1 receptor agonists. Pharmacol Res. 2022;182:106320. doi:10.1016/j.phrs.2022.106320
  • Gayle A, Dickinson S, Poole C, Pang M, Fauconnot O, Quint JK. Incidence of type II diabetes in chronic obstructive pulmonary disease: a nested case-control study. NPJ Prim Care Respir Med. 2019;29(1):26–28.
  • Peng Y, Zhong G, Wang L, et al. Chronic obstructive pulmonary disease, lung function and risk of type 2 diabetes: a systematic review and meta-analysis of cohort studies. Bmc Pulm Med. 2020;20(1). doi:10.1186/s12890-020-1178-y
  • Ho T, Huang C, Ruan S, Tsai Y, Lai F, Yu C. Diabetes mellitus in patients with chronic obstructive pulmonary disease-the impact on mortality. PLoS One. 2017;12(4):e175794. doi:10.1371/journal.pone.0175794
  • Flattet Y, Garin N, Serratrice J, Perrier A, Stirnemann J, Carballo S. Determining prognosis in acute exacerbation of COPD. Int J Chron Obstruct Pulmon Dis. 2017;12:467–475. doi:10.2147/COPD.S122382
  • Lin L, Shi J, Kang J, Wang Q. Analysis of prevalence and prognosis of type 2 diabetes mellitus in patients with acute exacerbation of COPD. Bmc Pulm Med. 2021;21(1). doi:10.1186/s12890-020-01371-9
  • Hsu I, Lu C, Li C, et al. Population-based cohort study suggesting a significantly increased risk of developing chronic obstructive pulmonary disease in people with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2018;138:66–74. doi:10.1016/j.diabres.2018.01.037
  • Katsiki N, Steiropoulos P, Papanas N, Mikhailidis DP. Diabetes mellitus and chronic obstructive pulmonary disease: an overview. Exp Clin Endocrinol Diabetes. 2021;129(10):699. doi:10.1055/a-1038-3883
  • Park SS, Perez Perez JL, Perez Gandara B, et al. Mechanisms linking COPD to type 1 and 2 diabetes mellitus: is there a relationship between diabetes and COPD? Medicina. 2022;58(8):1030. doi:10.3390/medicina58081030
  • Gläser S, Krüger S, Merkel M, Bramlage P, Herth FJF. Chronic obstructive pulmonary disease and diabetes mellitus: a systematic review of the literature. Respiration. 2015;89(3):253–264. doi:10.1159/000369863
  • Khateeb J, Fuchs E, Khamaisi M. Diabetes and lung disease: an underestimated relationship. Rev Diabet Stud. 2019;15(1):1–15. doi:10.1900/RDS.2019.15.1
  • Yaribeygi H, Maleki M, Sathyapalan T, Jamialahmadi T, Sahebkar A. Anti-inflammatory potentials of incretin-based therapies used in the management of diabetes. Life Sci. 2020;241:117152. doi:10.1016/j.lfs.2019.117152
  • Herrero-Cervera A, Soehnlein O, Kenne E. Neutrophils in chronic inflammatory diseases. Cell Mol Immunol. 2022;19(2):177–191.
  • Benjamin JT, Plosa EJ, Sucre JMS, et al. Neutrophilic inflammation during lung development disrupts elastin assembly and predisposes adult mice to COPD. J Clin Invest. 2021;131(1). doi:10.1172/JCI139481
  • Li N, Liu Y, Cai J. LncRNA MIR155HG regulates M1/M2 macrophage polarization in chronic obstructive pulmonary disease. Biomed Pharmacother. 2019;117:109015. doi:10.1016/j.biopha.2019.109015
  • Hatwal A. Inflammation and incretins. Indian J Endocrinol Metab. 2012;16(8):239. doi:10.4103/2230-8210.104049
  • Genschmer KR, Russell DW, Lal C, et al. Activated PMN exosomes: pathogenic entities causing matrix destruction and disease in the lung. Cell. 2019;176(1–2):113–126. doi:10.1016/j.cell.2018.12.002
  • Finicelli M, Digilio FA, Galderisi U, Peluso G. The emerging role of macrophages in chronic obstructive pulmonary disease: the potential impact of oxidative stress and extracellular vesicle on macrophage polarization and function. Antioxidants. 2022;11(3):464. doi:10.3390/antiox11030464
  • Takiguchi H, Yang CX, Yang CWT, et al. Macrophages with reduced expressions of classical M1 and M2 surface markers in human bronchoalveolar lavage fluid exhibit pro-inflammatory gene signatures. Sci Rep. 2021;11(1):1.
  • Mitchell PD, Salter BM, Oliveria JP, et al. Glucagon-like peptide-1 receptor expression on human eosinophils and its regulation of eosinophil activation. Clin Exp Allergy. 2017;47(3):331–338. doi:10.1111/cea.12860
  • Batty MJ, Chabrier G, Sheridan A, Gage MC. Metabolic hormones modulate macrophage inflammatory responses. Cancers. 2021;13(18):4661. doi:10.3390/cancers13184661
  • Bułdak Ł, Machnik G, Bułdak RJ, et al. Exenatide (a GLP-1 agonist) expresses anti-inflammatory properties in cultured human monocytes/macrophages in a protein kinase A and B/Akt manner. Pharmacol Rep. 2016;68(2):329–337. doi:10.1016/j.pharep.2015.10.008
  • Wiegman CH, Michaeloudes C, Haji G, et al. Oxidative stress–induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2015;136(3):769–780. doi:10.1016/j.jaci.2015.01.046
  • Chen J, Mei A, Liu X, et al. Glucagon-like peptide-1 receptor regulates macrophage migration in monosodium urate-induced peritoneal inflammation. Front Immunol. 2022;13:90.
  • Guo C, Huang T, Chen A, et al. Glucagon-like peptide 1 improves insulin resistance in vitro through anti-inflammation of macrophages. Braz J Med Biol Res. 2016;49(12). doi:10.1590/1414-431x20165826
  • Skurikhin E, Pershina O, Pakhomova A, et al. Endothelial progenitor cells as pathogenetic and diagnostic factors, and potential targets for GLP-1 in combination with metabolic syndrome and chronic obstructive pulmonary disease. Int J Mol Sci. 2019;20(5):1105. doi:10.3390/ijms20051105
  • Xu J, Wei G, Wang J, et al. Glucagon-like peptide-1 receptor activation alleviates lipopolysaccharide-induced acute lung injury in mice via maintenance of endothelial barrier function. Lab Invest. 2019;99(4):577–587. doi:10.1038/s41374-018-0170-0
  • Zhu T, Wu X, Zhang W, Xiao M. Glucagon Like Peptide-1 (GLP-1) modulates OVA-induced airway inflammation and mucus secretion involving a Protein Kinase A (PKA)-Dependent Nuclear Factor-κB (NF-κB) signaling pathway in mice. Int J Mol Sci. 2015;16(9):20195–20211. doi:10.3390/ijms160920195
  • Rakipovski G, Rolin B, Nøhr J, et al. The GLP-1 analogs liraglutide and semaglutide reduce atherosclerosis in ApoE−/− and LDLr−/− mice by a mechanism that includes inflammatory pathways. JACC Basic Transl Sci. 2018;3(6):844–857. doi:10.1016/j.jacbts.2018.09.004
  • Bułdak Ł, Machnik G, Bułdak RJ, Łabuzek K, Bołdys A, Okopień B. Exenatide and metformin express their anti-inflammatory effects on human monocytes/macrophages by the attenuation of MAPKs and NFκB signaling. Naunyn-Schmiedeb Arch Pharmacol. 2016;389(10):1103–1115. doi:10.1007/s00210-016-1277-8
  • Park HJ, Han H, Oh E, et al. Empagliflozin and dulaglutide are effective against obesity-induced airway hyperresponsiveness and fibrosis in a murine model. Sci Rep. 2019;9(1):1.
  • Mumby S, Adcock IM. Recent evidence from omic analysis for redox signaling and mitochondrial oxidative stress in COPD. J Inflamm. 2022;19(1). doi:10.1186/s12950-022-00308-9
  • Barnes PJ. Oxidative stress in chronic obstructive pulmonary disease. Antioxidants. 2022;11(5):965. doi:10.3390/antiox11050965
  • Barnes PJ. Oxidative stress-based therapeutics in COPD. Redox Biol. 2020;33:101544. doi:10.1016/j.redox.2020.101544
  • Lin T, Lin K, Lin H, et al. Glucagon-Like Peptide-1 receptor agonist ameliorates 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP) neurotoxicity through enhancing mitophagy flux and reducing α-synuclein and oxidative stress. Front Mol Neurosci. 2021;14. doi:10.3389/fnmol.2021.697440
  • Zhang L, Zhang L, Li L, Hölscher C. Semaglutide is neuroprotective and reduces α-synuclein levels in the chronic MPTP mouse model of parkinson’s disease. J Parkinsons Dis. 2019;9(1):157–171. doi:10.3233/JPD-181503
  • Bułdak Ł, Łabuzek K, Bułdak RJ, Machnik G, Bołdys A, Okopień B. Exenatide (a GLP-1 agonist) improves the antioxidative potential of in vitro cultured human monocytes/macrophages. Naunyn-Schmiedeb Arch Pharmacol. 2015;388(9):905–919. doi:10.1007/s00210-015-1124-3
  • Liu X, Huang J, Li J, Mao Q, He J. Effects of liraglutide combined with insulin on oxidative stress and serum MCP-1 and NF-κB levels in type 2 diabetes. J Coll Physicians Surg Pak. 2019;29(3):218–221. doi:10.29271/jcpsp.2019.03.218
  • Voynow JA, Shinbashi M. Neutrophil elastase and chronic lung disease. Biomolecules. 2021;11(8):1065. doi:10.3390/biom11081065
  • Thulborn SJ, Mistry V, Brightling CE, Moffitt KL, Ribeiro D, Bafadhel M. Neutrophil elastase as a biomarker for bacterial infection in COPD. Respir Res. 2019;20(1):1–7.
  • Gharib SA, Manicone AM, Parks WC. Matrix metalloproteinases in emphysema. Matrix Biol. 2018;73:34–51. doi:10.1016/j.matbio.2018.01.018
  • Wells JM, Parker MM, Oster RA, et al. Elevated circulating MMP-9 is linked to increased COPD exacerbation risk in SPIROMICS and COPDGene. JCI Insight. 2018;3(22). doi:10.1172/jci.insight.123614
  • Stoller JK, Aboussouan LS. Alpha1-antitrypsin deficiency. Lancet. 2005;365(9478):2225–2236. doi:10.1016/S0140-6736(05)66781-5
  • Armstrong MJ, Hull D, Guo K, et al. Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatohepatitis. J Hepatol. 2016;64(2):399–408. doi:10.1016/j.jhep.2015.08.038
  • Gallego-Colon E, Klych-Ratuszny A, Kosowska A, et al. Exenatide modulates metalloproteinase expression in human cardiac smooth muscle cells via the inhibition of Akt signaling pathway. Pharmacol Rep. 2018;70(1):178–183. doi:10.1016/j.pharep.2017.10.003
  • Garczorz W, Gallego-Colon E, Kosowska A, et al. Exenatide exhibits anti-inflammatory properties and modulates endothelial response to tumor necrosis factor α-mediated activation. Cardiovasc Ther. 2018;36(2):e12317. doi:10.1111/1755-5922.12317
  • Gan H, Hou X, Zhu Z, et al. Smoking: a leading factor for the death of chronic respiratory diseases derived from global burden of disease study 2019. BMC Pulm Med. 2022;22(1). doi:10.1186/s12890-022-01944-w
  • Wei J-P, Yang C-L, Leng W-H, Ding -L-L, Zhao G-H. Use of GLP1RAs and occurrence of respiratory disorders: a meta-analysis of large randomized trials of GLP1RAs. Clin Respir J. 2021;15(7):847–850. doi:10.1111/crj.13372
  • Rogliani P, Matera MG, Calzetta L, et al. Long-term observational study on the impact of GLP-1R agonists on lung function in diabetic patients. Resp Med. 2019;154:86–92. doi:10.1016/j.rmed.2019.06.015
  • Huang J, Yi H, Zhao C, et al. Glucagon-like peptide-1 receptor (GLP-1R) signaling ameliorates dysfunctional immunity in COPD patients. Int J Chron Obstruct Pulmon Dis. 2018;13:3191–3202. doi:10.2147/COPD.S175145
  • Hadjiyanni I, Siminovitch KA, Danska JS, Drucker DJ. Glucagon-like peptide-1 receptor signaling selectively regulates murine lymphocyte proliferation and maintenance of peripheral regulatory T cells. Diabetologia. 2010;53(4):730–740. doi:10.1007/s00125-009-1643-x
  • Romaní-Pérez M, Outeiriño-Iglesias V, Moya CM, et al. Activation of the GLP-1 receptor by liraglutide increases ACE2 expression, reversing right ventricle hypertrophy, and improving the production of SP-A and SP-B in the lungs of type 1 diabetes rats. Endocrinology. 2015;156(10):3559–3569. doi:10.1210/en.2014-1685
  • Romaní-Pérez M, Outeiriño-Iglesias V, Gil-Lozano M, González-Matías LC, Mallo F, Vigo E. Pulmonary GLP-1 receptor increases at birth and exogenous GLP-1 receptor agonists augmented surfactant-protein levels in litters from normal and nitrofen-treated pregnant rats. Endocrinology. 2013;154(3):1144–1155. doi:10.1210/en.2012-1786
  • Altintas Dogan AD, Hilberg O, Hess S, Jensen TT, Bladbjerg E, Juhl CB. Respiratory effects of treatment with a glucagon-like peptide-1 receptor agonist in patients suffering from obesity and chronic obstructive pulmonary disease. Int J Chron Obstruct. 2022;17:405–414.
  • Choi W, Choe S, Lin J, et al. Exendin-4 restores airway mucus homeostasis through the GLP1R-PKA-PPARγ-FOXA2-phosphatase signaling. Mucosal Immunol. 2020;13(4):637–651. doi:10.1038/s41385-020-0262-1
  • Rogliani P, Calzetta L, Capuani B, et al. Glucagon-like peptide 1 receptor: a novel pharmacological target for treating human bronchial hyperresponsiveness. Am J Respir Cell Mol. 2016;55(6):804–814. doi:10.1165/rcmb.2015-0311OC
  • Figat M, Kardas G, Kuna P, Panek MG. Beneficial influence of exendin-4 on specific organs and mechanisms favourable for the elderly with concomitant obstructive lung diseases. Brain Sci. 2022;12(8):1090. doi:10.3390/brainsci12081090
  • Pradhan R, Lu S, Yin H, et al. Novel antihyperglycaemic drugs and prevention of chronic obstructive pulmonary disease exacerbations among patients with type 2 diabetes: population based cohort study. BMJ. 2022;2022:e71380.
  • Foer D, Beeler PE, Cui J, Karlson EW, Bates DW, Cahill KN. Asthma exacerbations in patients with type 2 diabetes and asthma on glucagon-like peptide-1 receptor agonists. Am J Respir Crit Care. 2021;203(7):831–840. doi:10.1164/rccm.202004-0993OC