549
Views
5
CrossRef citations to date
0
Altmetric
COMMENTARY

The Importance of the Diaphragm in Neuromotor Function in the Patient with Chronic Obstructive Pulmonary Disease

ORCID Icon, ORCID Icon, , ORCID Icon &
Pages 837-848 | Received 09 Jan 2023, Accepted 13 Apr 2023, Published online: 11 May 2023

References

  • Tang T, Li Z, Lu X, Du J. Development and validation of a risk prediction model for anxiety or depression among patients with chronic obstructive pulmonary disease between 2018 and 2020. Ann Med. 2022;54(1):2181–2190. doi:10.1080/07853890.2022.2105394
  • Feizi H, Alizadeh M, Nejadghaderi SA, et al. The burden of chronic obstructive pulmonary disease and its attributable risk factors in the Middle East and North Africa region, 1990–2019. Respir Res. 2022;23(1):319. doi:10.1186/s12931-022-02242-z
  • Fei F, Siegert R, Zhang X, Gao W, Koffman J. Symptom clusters, associated factors and health-related quality of life in patients with chronic obstructive pulmonary disease: a structural equation modelling analysis. J Clin Nurs. 2023;32(1–2):298–310. doi:10.1111/jocn.16234
  • Cao Y, Li P, Wang Y, Liu X, Wu W. Diaphragm dysfunction and rehabilitation strategy in patients with chronic obstructive pulmonary disease. Front Physiol. 2022;13:872277. doi:10.3389/fphys.2022.872277
  • Zhang L, Sun Y. Muscle-bone crosstalk in chronic obstructive pulmonary disease. Front Endocrinol. 2021;12:724911. doi:10.3389/fendo.2021.724911
  • de Jong C, van Boven JFM, de Boer MR, Kocks JWH, Berger MY, van der Molen T. Improved health status of severe COPD patients after being included in an integrated primary care service: a prospective cohort study. Eur J Gen Pract. 2022;28(1):66–74. doi:10.1080/13814788.2022.2059070
  • Bordoni B. Costen’s syndrome and COPD. Int J Chron Obstruct Pulmon Dis. 2019;14:457–460. doi:10.2147/COPD.S200787
  • Bordoni B, Marelli F, Morabito B, Castagna R. Chest pain in patients with COPD: the fascia’s subtle silence. Int J Chron Obstruct Pulmon Dis. 2018;13:1157–1165. doi:10.2147/COPD.S156729
  • Bordoni B, Marelli F, Morabito B, Sacconi B, Caiazzo P, Castagna R. Low back pain and gastroesophageal reflux in patients with COPD: the disease in the breath. Int J Chron Obstruct Pulmon Dis. 2018;13:325–334. doi:10.2147/COPD.S150401
  • Button BM, Holland AE, Sherburn MS, Chase J, Wilson JW, Burge AT. Prevalence, impact and specialised treatment of urinary incontinence in women with chronic lung disease. Physiotherapy. 2019;105(1):114–119. doi:10.1016/j.physio.2018.07.006
  • Bordoni B, Marelli F, Morabito B, Sacconi B. Depression, anxiety and chronic pain in patients with chronic obstructive pulmonary disease: the influence of breath. Monaldi Arch Chest Dis. 2017;87(1):811. doi:10.4081/monaldi.2017.811
  • Oliveira CC, Lee AL, McGinley J, et al. Balance and falls in acute exacerbation of chronic obstructive pulmonary disease: a prospective study. COPD. 2017;14(5):518–525. doi:10.1080/15412555.2017.1342232
  • Zhang L, Li D, Chang C, Sun Y. Myostatin/HIF2α-mediated ferroptosis is involved in skeletal muscle dysfunction in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2022;17:2383–2399. doi:10.2147/COPD.S377226
  • Zhao H, Li P, Wang J. The role of muscle-specific MicroRNAs in patients with chronic obstructive pulmonary disease and skeletal muscle dysfunction. Front Physiol. 2022;13:954364. doi:10.3389/fphys.2022.954364
  • Kaygusuz MH, Oral Tapan O, Tapan U, Genc S. Balance impairment and cognitive dysfunction in patients with chronic obstructive pulmonary disease under 65 years. Clin Respir J. 2022;16(3):200–207. doi:10.1111/crj.13469
  • Voica AS, Oancea C, Tudorache E, et al. Chronic obstructive pulmonary disease phenotypes and balance impairment. Int J Chron Obstruct Pulmon Dis. 2016;11:919–925. doi:10.2147/COPD.S101128
  • Luo H, Zhang Q, Niu Y, Kan H, Chen R. Fine particulate matter and cardiorespiratory health in China: a systematic review and meta-analysis of epidemiological studies. J Environ Sci. 2023;123:306–316. doi:10.1016/j.jes.2022.04.026
  • Lu HY, Liao KM. The incidence of bronchiectasis in chronic obstructive pulmonary disease. Open Med. 2022;17(1):1927–1934. doi:10.1515/med-2022-0599
  • Cirovic A, Denic A, Clarke BL, Vassallo R, Cirovic A, Landry GM. A hypoxia-driven occurrence of chronic kidney disease and osteoporosis in COPD individuals: new insights into environmental cadmium exposure. Toxicology. 2022;482:153355. doi:10.1016/j.tox.2022.153355
  • Wagih Shaltout S, Abd El-Maksoud M, Abdel Rahman A, Yousef AM, El Sherbiny W. Clinical spectrum of nonalcoholic fatty liver disease in patients with chronic obstructive pulmonary disease. Turk Thorac J. 2022;23(6):420–425. doi:10.5152/TurkThoracJ.2022.22002
  • Sharanya A, Ciano M, Withana S, Kemp PR, Polkey MI, Sathyapala SA. Sex differences in COPD-related quadriceps muscle dysfunction and fibre abnormalities. Chron Respir Dis. 2019;16:1479973119843650. doi:10.1177/1479973119843650
  • Lage VKDS, de Paula FA, Lima LP, et al. Plasma levels of myokines and inflammatory markers are related with functional and respiratory performance in older adults with COPD and sarcopenia. Exp Gerontol. 2022;164:111834. doi:10.1016/j.exger.2022.111834
  • Attaway AH, Bellar A, Mishra S, et al. Adaptive exhaustion during prolonged intermittent hypoxia causes dysregulated skeletal muscle protein homeostasis. J Physiol. 2022. doi:10.1113/JP283700
  • Gayan-Ramirez G, Decramer M. Mechanisms of striated muscle dysfunction during acute exacerbations of COPD. J Appl Physiol. 2013;114(9):1291–1299. doi:10.1152/japplphysiol.00847.2012
  • Alqahtani JS, Oyelade T, Sreedharan J, et al. Diagnostic and clinical values of non-cardiac ultrasound in COPD: a systematic review. BMJ Open Respir Res. 2020;7(1):e000717. doi:10.1136/bmjresp-2020-000717
  • Wallbridge P, Parry SM, Das S, et al. Parasternal intercostal muscle ultrasound in chronic obstructive pulmonary disease correlates with spirometric severity. Sci Rep. 2018;8(1):15274. doi:10.1038/s41598-018-33666-7
  • Jin J, Li F, Fan C, Wu Y, He C. Elevated mir-145-5p is associated with skeletal muscle dysfunction and triggers apoptotic cell death in C2C12 myotubes. J Muscle Res Cell Motil. 2022;43(3):135–145. doi:10.1007/s10974-022-09624-2
  • Calatayud J, Torres-Castro R, Vera-Uribe R, et al. Neuromuscular and acute symptoms responses to progressive elastic resistance exercise in patients with chronic obstructive pulmonary disease: cross-sectional study. Front Med. 2022;9:934410. doi:10.3389/fmed.2022.934410
  • Gephine S, Mucci P, Bielmann M, et al. Quadriceps physiological response during the 1-min sit-to-stand test in people with severe COPD and healthy controls. Sci Rep. 2022;12(1):794. doi:10.1038/s41598-022-04820-z
  • Valle MS, Casabona A, Di Fazio E, et al. Impact of chronic obstructive pulmonary disease on passive viscoelastic components of the musculoarticular system. Sci Rep. 2021;11(1):18077. doi:10.1038/s41598-021-97621-9
  • Casabona A, Valle MS, Laudani L, et al. Is the power spectrum of electromyography signal a feasible tool to estimate muscle fiber composition in patients with COPD? J Clin Med. 2021;10(17):3815. doi:10.3390/jcm10173815
  • Frazão M, Santos ADC, Araújo AA, et al. Neuromuscular efficiency is impaired during exercise in COPD patients. Respir Physiol Neurobiol. 2021;290:103673. doi:10.1016/j.resp.2021.103673
  • Tounsi B, Acheche A, Lelard T, Tabka Z, Trabelsi Y, Ahmaidi S. Effects of specific inspiratory muscle training combined with whole-body endurance training program on balance in COPD patients: randomized controlled trial. PLoS One. 2021;16(9):e0257595. doi:10.1371/journal.pone.0257595
  • Oliveira CC, Annoni R, Lee AL, McGinley J, Irving LB, Denehy L. Falls prevalence and risk factors in people with chronic obstructive pulmonary disease: a systematic review. Respir Med. 2021;176:106284. doi:10.1016/j.rmed.2020.106284
  • Loughran KJ, Atkinson G, Beauchamp MK, et al. Balance impairment in individuals with COPD: a systematic review with meta-analysis. Thorax. 2020;75(7):539–546. doi:10.1136/thoraxjnl-2019-213608
  • Mętel S, Kostrzon M, Adamiak J. Dynamic balance and chest mobility of older adults after speleotherapy combined with pulmonary rehabilitation, endurance and strength training-a prospective study in chronic respiratory diseases. Int J Environ Res Public Health. 2022;19(18):11760. doi:10.3390/ijerph191811760
  • McCrum C, Vaes AW, Delbressine JM, et al. A pilot study on the feasibility and effectiveness of treadmill-based perturbations for assessing and improving walking stability in chronic obstructive pulmonary disease. Clin Biomech. 2022;91:105538. doi:10.1016/j.clinbiomech.2021.105538
  • Porto EF, Castro AAM, Fausto DM, et al. Balance impairment and lower limbs strength in patients with COPD who fell in the previous year. Monaldi Arch Chest Dis. 2022;92(4). doi:10.4081/monaldi.2022.1204
  • de Castro LA, Ribeiro LR, Mesquita R, et al. Static and functional balance in individuals with COPD: comparison with healthy controls and differences according to sex and disease severity. Respir Care. 2016;61(11):1488–1496. doi:10.4187/respcare.04749
  • Janssens L, Brumagne S, McConnell AK, et al. Proprioceptive changes impair balance control in individuals with chronic obstructive pulmonary disease. PLoS One. 2013;8(3):e57949. doi:10.1371/journal.pone.0057949
  • Smith MD, Chang AT, Hodges PW. Balance recovery is compromised and trunk muscle activity is increased in chronic obstructive pulmonary disease. Gait Posture. 2016;43:101–107. doi:10.1016/j.gaitpost.2015.09.004
  • Jirange P, Vaishali K, Sinha MK, Bairapareddy KC, Alaparthi GK. A cross-sectional study on balance deficits and gait deviations in COPD patients. Can Respir J. 2021;2021:6675088. doi:10.1155/2021/6675088
  • Rodrigues GD, Gurgel JL, da Nobrega ACL, Soares PPDS. Orthostatic intolerance: a handicap of aging or physical deconditioning? Eur J Appl Physiol. 2022;122(9):2005–2018. doi:10.1007/s00421-022-04978-4
  • Ottenheijm CA, Heunks LM, Dekhuijzen RP. Diaphragm adaptations in patients with COPD. Respir Res. 2008;9(1):12. doi:10.1186/1465-9921-9-12
  • Bordoni B, Walkowski S, Escher A, Ducoux B. The importance of the posterolateral area of the diaphragm muscle for palpation and for the treatment of manual osteopathic medicine. Complement Med Res. 2022;29(1):74–82. doi:10.1159/000517507
  • Palma G, Sorice GP, Genchi VA, et al. Adipose tissue inflammation and pulmonary dysfunction in obesity. Int J Mol Sci. 2022;23(13):7349. doi:10.3390/ijms23137349
  • Chen Y, Li J, Dong B, Zhu Z, Lyu G. Two-dimensional shear wave elastography: a new tool for evaluating respiratory muscle stiffness in chronic obstructive pulmonary disease patients. BMC Pulm Med. 2022;22(1):441. doi:10.1186/s12890-022-02231-4
  • Marino S, Bettini P, Pini L, et al. Effects of chronic and acute pulmonary hyperinflation on phrenic nerve conduction in patients with COPD. COPD. 2020;17(4):378–383. doi:10.1080/15412555.2020.1779680
  • Elnemr R, Sweed RA, Shafiek H. Diaphragmatic motor cortex hyperexcitability in patients with chronic obstructive pulmonary disease. PLoS One. 2019;14(12):e0217886. doi:10.1371/journal.pone.0217886
  • Kahnert K, Föhrenbach M, Lucke T, et al. The impact of COPD on polyneuropathy: results from the German COPD cohort COSYCONET. Respir Res. 2020;21(1):28. doi:10.1186/s12931-020-1293-6
  • Barreiro E, Salazar-Degracia A, Sancho-Muñoz A, Aguiló R, Rodríguez-Fuster A, Gea J. Endoplasmic reticulum stress and unfolded protein response in diaphragm muscle dysfunction of patients with stable chronic obstructive pulmonary disease. J Appl Physiol. 2019;126(6):1572–1586. doi:10.1152/japplphysiol.00670.2018
  • Reggiani C, Marcucci L. A controversial issue: can mitochondria modulate cytosolic calcium and contraction of skeletal muscle fibers? J Gen Physiol. 2022;154(9):e202213167. doi:10.1085/jgp.202213167
  • Bordoni B. Comment on: the effect of pedal pump lymphatic technique versus passive recovery following maximal exercise: a randomized cross-over trial. Sports Med Open. 2022;8(1):51. doi:10.1186/s40798-022-00443-w
  • Wang Z, Grange M, Pospich S, et al. Structures from intact myofibrils reveal mechanism of thin filament regulation through nebulin. Science. 2022;375(6582):eabn1934. doi:10.1126/science.abn1934
  • Zhang B, Li P, Li J, Liu X, Wu W. Effect of oxidative stress on diaphragm dysfunction and exercise intervention in chronic obstructive pulmonary disease. Front Physiol. 2021;12:684453. doi:10.3389/fphys.2021.684453
  • Bordoni B. Updated Perspectives on the Role of Biomechanics in COPD: considerations for the Clinician [Letter]. Int J Chron Obstruct Pulmon Dis. 2022;17:3017–3018. doi:10.2147/COPD.S395493
  • Wada S, Matsuoka S, Mimura H. Inspiratory and expiratory CT analyses of the diaphragmatic crus in chronic obstructive pulmonary disease. Jpn J Radiol. 2022;40(12):1257–1262. doi:10.1007/s11604-022-01314-w
  • Ngamsnae P, Okazaki T, Ren Y, et al. Anatomy and pathology of lymphatic vessels under physiological and inflammatory conditions in the mouse diaphragm. Microvasc Res. 2023;145:104438. doi:10.1016/j.mvr.2022.104438
  • James MD, Phillips DB, Vincent SG, et al. Canadian Respiratory Research Network. Exertional dyspnoea in patients with mild-to-severe chronic obstructive pulmonary disease: neuromechanical mechanisms. J Physiol. 2022;600(18):4227–4245. doi:10.1113/JP283252
  • Wei S, Lu R, Zhang Z, et al. MRI-assessed diaphragmatic function can predict frequent acute exacerbation of COPD: a prospective observational study based on telehealth-based monitoring system. BMC Pulm Med. 2022;22(1):438. doi:10.1186/s12890-022-02254-x
  • Bordoni B, Escher AR. Functional evaluation of the diaphragm with a noninvasive test. J Osteopath Med. 2021;121(11):835–842. doi:10.1515/jom-2021-0101
  • Schepens T, Fard S, Goligher EC. Assessing Diaphragmatic Function. Respir Care. 2020;65(6):807–819. doi:10.4187/respcare.07410
  • Bordoni B, Marelli F, Morabito B, Sacconi B. Depression and anxiety in patients with chronic heart failure. Future Cardiol. 2018;14(2):115–119. doi:10.2217/fca-2017-0073
  • Nair J, Streeter KA, Turner SMF, et al. Anatomy and physiology of phrenic afferent neurons. J Neurophysiol. 2017;118(6):2975–2990. doi:10.1152/jn.00484.2017
  • Dempsey JA. Respiratory determinants of exercise limitation: focus on phrenic afferents and the lung vasculature. Clin Chest Med. 2019;40(2):331–342. doi:10.1016/j.ccm.2019.02.002
  • Fuller DD, Rana S, Smuder AJ, Dale EA. The phrenic neuromuscular system. Handb Clin Neurol. 2022;188:393–408. doi:10.1016/B978-0-323-91534-2.00012-6
  • Pickering M, Jones JF. The diaphragm: two physiological muscles in one. J Anat. 2002;201(4):305–312. doi:10.1046/j.1469-7580.2002.00095.x
  • Chun KY, Son YJ, Seo S, Lee HJ, Han CS. Nonlinearly frequency-adaptive, self-powered, proton-driven somatosensor inspired by a human mechanoreceptor. ACS Sens. 2020;5(3):845–852. doi:10.1021/acssensors.0c00119
  • Zeveke AV, Efes ED, Polevaya SA. An integrative framework of the skin receptors activation: mechanoreceptors activity patterns versus “labeled lines”. J Integr Neurosci. 2013;12(1):47–56. doi:10.1142/S0219635213500052
  • Augustine JR. Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Brain Res Rev. 1996;22(3):229–244. doi:10.1016/S0165-0173(96)00011-2
  • Scalabrini A, Wolman A, Northoff G. The self and its right insula-differential topography and dynamic of right vs. left insula. Brain Sci. 2021;11(10):1312. doi:10.3390/brainsci11101312
  • Streeter KA, Sunshine MD, Davenport PW, Fuller DD. Phrenic afferent activation modulates cardiorespiratory output in the adult rat. J Neurophysiol. 2021;126(6):2091–2103. doi:10.1152/jn.00433.2021
  • Hilz MJ. Transcutaneous vagus nerve stimulation - A brief introduction and overview. Auton Neurosci. 2022;243:103038. doi:10.1016/j.autneu.2022.103038
  • Al-Chalabi M, Reddy V, Gupta S. Neuroanatomy, spinothalamic tract. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022.
  • Young RL, Page AJ, Cooper NJ, Frisby CL, Blackshaw LA. Sensory and motor innervation of the crural diaphragm by the vagus nerves. Gastroenterology. 2010;138(3):1091–101.e1–e5. doi:10.1053/j.gastro.2009.08.053
  • Novello M, Bosman LWJ, De Zeeuw CI. A systematic review of direct outputs from the cerebellum to the brainstem and diencephalon in mammals. Cerebellum. 2022. doi:10.1007/s12311-022-01499-w
  • Yates BJ, Billig I, Cotter LA, Mori RL, Card JP. Role of the vestibular system in regulating respiratory muscle activity during movement. Clin Exp Pharmacol Physiol. 2002;29(1–2):112–117. doi:10.1046/j.1440-1681.2002.03612.x
  • Neuhuber WL, Berthoud HR. Functional anatomy of the vagus system: how does the polyvagal theory comply? Biol Psychol. 2022;174:108425. doi:10.1016/j.biopsycho.2022.108425
  • Peng KP, May A. Noninvasive vagus nerve stimulation modulates trigeminal but not extracephalic somatosensory perception: functional evidence for a trigemino-vagal system in humans. Pain. 2022;163(10):1978–1986. doi:10.1097/j.pain.0000000000002595
  • Ni RJ, Huang ZH, Luo PH, Ma XH, Li T, Zhou JN. The tree shrew cerebellum atlas: systematic nomenclature, neurochemical characterization, and afferent projections. J Comp Neurol. 2018;526(17):2744–2775. doi:10.1002/cne.24526
  • Zhang Y, Zhang Y, Tian K, et al. Calcitonin gene-related peptide facilitates sensitization of the vestibular nucleus in a rat model of chronic migraine. J Headache Pain. 2020;21(1):72. doi:10.1186/s10194-020-01145-y
  • Shi MY, Ding LF, Guo YH, Cheng YX, Bi GQ, Lau PM. Long-range GABAergic projections from the nucleus of the solitary tract. Mol Brain. 2021;14(1):38. doi:10.1186/s13041-021-00751-4
  • Laviolette L, Niérat MC, Hudson AL, Raux M, Allard E, Similowski T. The supplementary motor area exerts a tonic excitatory influence on corticospinal projections to phrenic motoneurons in awake humans. PLoS One. 2013;8(4):e62258. doi:10.1371/journal.pone.0062258
  • Green AL, Paterson DJ. Using deep brain stimulation to unravel the mysteries of cardiorespiratory control. Compr Physiol. 2020;10(3):1085–1104. doi:10.1002/cphy.c190039
  • Belyakov VI, Merkulova NA, Inyushkin AN. Respiratory effects of sensorimotor cortex and their mechanisms in rats. Bull Exp Biol Med. 2002;133(4):314–317. doi:10.1023/A:1016265130557
  • Ozaki I, Kurata K. The effects of voluntary control of respiration on the excitability of the primary motor hand area, evaluated by end-tidal CO2 monitoring. Clin Neurophysiol. 2015;126(11):2162–2169. doi:10.1016/j.clinph.2014.12.032
  • Teixeira AL, Vianna LC. The exercise pressor reflex: an update. Clin Auton Res. 2022;32(4):271–290. doi:10.1007/s10286-022-00872-3
  • Siedlecki P, Ivanova TD, Shoemaker JK, Garland SJ. The effects of slow breathing on postural muscles during standing perturbations in young adults. Exp Brain Res. 2022;240(10):2623–2631. doi:10.1007/s00221-022-06437-0
  • Sembera M, Busch A, Kobesova A, Hanychova B, Sulc J, Kolar P. Postural-respiratory function of the diaphragm assessed by M-mode ultrasonography. PLoS One. 2022;17(10):e0275389. doi:10.1371/journal.pone.0275389
  • Illidi CR, Romer LM. Stabilising function of the human diaphragm in response to involuntary augmented breaths induced with or without lower-limb movements. Exp Physiol. 2022;107(12):1477–1492. doi:10.1113/EP090605
  • Kolar P, Sulc J, Kyncl M, et al. Stabilizing function of the diaphragm: dynamic MRI and synchronized spirometric assessment. J Appl Physiol. 2010;109(4):1064–1071. doi:10.1152/japplphysiol.01216.2009
  • Hodges PW, Gandevia SC. Activation of the human diaphragm during a repetitive postural task. J Physiol. 2000;522(Pt1):165–175. doi:10.1111/j.1469-7793.2000.t01-1-00165.xm
  • Gandevia SC, Butler JE, Hodges PW, Taylor JL. Balancing acts: respiratory sensations, motor control and human posture. Clin Exp Pharmacol Physiol. 2002;29(1–2):118–121. doi:10.1046/j.1440-1681.2002.03611.x
  • Gidron Y, Deschepper R, De Couck M, Thayer JF, Velkeniers B. The vagus nerve can predict and possibly modulate non-communicable chronic diseases: introducing a neuroimmunological paradigm to public health. J Clin Med. 2018;7(10):371. doi:10.3390/jcm7100371
  • Spiesshoefer J, Regmi B, Ottaviani MM, et al. Sympathetic and vagal nerve activity in COPD: pathophysiology, presumed determinants and underappreciated therapeutic potential. Front Physiol. 2022;13:919422. doi:10.3389/fphys.2022.919422
  • Yu J. A historical perspective of pulmonary rapidly adapting receptors. Respir Physiol Neurobiol. 2021;287:103595. doi:10.1016/j.resp.2020.103595
  • Dallak MA, Pirie LJ, Davies A. The influence of pulmonary receptors on respiratory drive in a rabbit model of pulmonary emphysema. Respir Physiol Neurobiol. 2007;156(1):33–39. doi:10.1016/j.resp.2006.08.001
  • Matsumoto S, Yoshida S, Ikeda M, Nishikawa T, Saiki C, Takeda M. Effects of potassium channel blockers on hyperinflation-induced rapidly adapting pulmonary stretch receptor stimulation in the rabbit. Life Sci. 2001;70(5):491–501. doi:10.1016/s0024-3205(01)01424-2
  • Pelleg A, Xu F, Zhuang J, Undem B, Burnstock G. DT-0111: a novel drug-candidate for the treatment of COPD and chronic cough. Ther Adv Respir Dis. 2019;13:1753466619877960. doi:10.1177/1753466619877960
  • Kabbach EZ, Mazzuco A, Borghi-Silva A, et al. Increased parasympathetic cardiac modulation in patients with acute exacerbation of COPD: how should we interpret it? Int J Chron Obstruct Pulmon Dis. 2017;12:2221–2230. doi:10.2147/COPD.S134498
  • Marmerstein JT, McCallum GA, Durand DM. Direct measurement of vagal tone in rats does not show correlation to HRV. Sci Rep. 2021;11(1):1210. doi:10.1038/s41598-020-79808-8