304
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

A2M Serves as Promising Biomarker for Chronic Obstructive Pulmonary Disease

, , , , & ORCID Icon
Pages 683-692 | Received 06 Feb 2023, Accepted 13 Apr 2023, Published online: 24 Apr 2023

References

  • Collaborators GCRD. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet Respir Med. 2017;5(9):691. doi:10.1016/S2213-2600(17)30293-X
  • Singh D, Agusti A, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease: the GOLD science committee report 2019. Eur Respir J. 2019;53(5):1900164. doi:10.1183/13993003.00164-2019
  • Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2016;138(1):16–27. doi:10.1016/j.jaci.2016.05.011
  • Chung K, Adcock I. Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair and destruction. Eur Respir J. 2008;31(6):1334–1356. doi:10.1183/09031936.00018908
  • Bchir S, Nasr HB, Bouchet S, et al. Concomitant elevations of MMP‐9, NGAL, proMMP‐9/NGAL and neutrophil elastase in serum of smokers with chronic obstructive pulmonary disease. J Cell Mol Med. 2017;21(7):1280–1291. doi:10.1111/jcmm.13057
  • de Boer WI, Hau CM, van Schadewijk A, Stolk J, van Krieken JHJ, Hiemstra PS. Expression of epidermal growth factors and their receptors in the bronchial epithelium of subjects with chronic obstructive pulmonary disease. Am J Clin Pathol. 2006;125(2):184–192. doi:10.1309/W1AXKGT7UA37X257
  • Lee SH, Lee SH, Kim CH, et al. Increased expression of vascular endothelial growth factor and hypoxia inducible factor-1α in lung tissue of patients with chronic bronchitis. Clin Biochem. 2014;47(7–8):552–559. doi:10.1016/j.clinbiochem.2014.01.012
  • Salvi SS, Barnes PJ. Chronic obstructive pulmonary disease in non-smokers. Lancet. 2009;374(9691):733–743. doi:10.1016/S0140-6736(09)61303-9
  • Salvi SS, Brashier BB, Londhe J, et al. Phenotypic comparison between smoking and non-smoking chronic obstructive pulmonary disease. Respir Res. 2020;21(1):1–12. doi:10.1186/s12931-020-1310-9
  • Jindal S, Jindal A. COPD in biomass exposed nonsmokers: a different phenotype. Expert Rev Respir Med. 2021;15(1):51–58. doi:10.1080/17476348.2021.1835476
  • Zhou Y, Wang C, Yao W, et al. COPD in Chinese nonsmokers. Eur Respir J. 2009;33(3):509. doi:10.1183/09031936.00084408
  • Jindal S, Aggarwal A, Jindal A, et al. COPD exacerbation rates are higher in non-smoker patients in India. Int J Tuberc Lung Dis. 2020;24(12):1272–1278. doi:10.5588/ijtld.20.0253
  • Ocakli B, Acarturk E, Aksoy E, et al. The impact of exposure to biomass smoke versus cigarette smoke on inflammatory markers and pulmonary function parameters in patients with chronic respiratory failure. Int J Chron Obstruct Pulmon Dis. 2018;Volume 13:1261–1267. doi:10.2147/COPD.S162658
  • Poller W, Barth J, Voss B. Detection of an alteration of the α2 gene in a patient with chronic lung disease and serum α2 deficiency. Hum Genet. 1989;83(1):93–96. doi:10.1007/BF00274157
  • Harwood SL, Lyngsø J, Zarantonello A, et al. Structural investigations of human A2M identify a hollow native conformation that underlies its distinctive protease-trapping mechanism. Mol Cell Proteomics. 2021;20:100090. doi:10.1016/j.mcpro.2021.100090
  • Borth W. α2 Macroglobulin, a multifunctional binding protein with targeting characteristics. FASEB J. 1992;6(15):3345–3353. doi:10.1096/fasebj.6.15.1281457
  • Vandooren J, Itoh Y. Alpha-2-macroglobulin in inflammation, immunity and infections. Front Immunol. 2021;12. doi:10.3389/fimmu.2021.803244
  • Demedts IK, Brusselle GG, Bracke KR, Vermaelen KY, Pauwels RA. Matrix metalloproteinases in asthma and COPD. Curr Opin Pharmacol. 2005;5(3):257–263. doi:10.1016/j.coph.2004.12.005
  • Culpitt S, Rogers D, Traves S, Barnes P, Donnelly L. Sputum matrix metalloproteases: comparison between chronic obstructive pulmonary disease and asthma. Respir Med. 2005;99(6):703–710. doi:10.1016/j.rmed.2004.10.022
  • Arellano-Orden E, Calero-Acuña C, Cordero JA, et al. Specific networks of plasma acute phase reactants are associated with the severity of chronic obstructive pulmonary disease: a case-control study. Int J Med Sci. 2017;14(1):67. doi:10.7150/ijms.16907
  • Qian Y, Mao Z-D, Shi Y-J, Liu Z-G, Cao Q, Zhang Q. Comprehensive analysis of miRNA-mRNA-lncRNA networks in non-smoking and smoking patients with chronic obstructive pulmonary disease. Cell Physiol Biochem. 2018;50(3):1140–1153. doi:10.1159/000494541
  • Sharafkhaneh A, Hanania NA, Kim V. Pathogenesis of emphysema: from the bench to the bedside. Proc Am Thorac Soc. 2008;5(4):475–477. doi:10.1513/pats.200708-126ET
  • Löffek S, Schilling O, Franzke C. Series ‘matrix metalloproteinases in lung health and disease’edited by J. Müller-Quernheim and O. Eickelberg number 1 in this series: biological role of matrix metalloproteinases: a critical balance. Eur Respir J. 2011;38(1):191–208. doi:10.1183/09031936.00146510
  • Arbeláez LF, Bergmann U, Tuuttila A, Shanbhag VP, Stigbrand T. Interaction of matrix metalloproteinases-2 and-9 with pregnancy zone protein and α2-macroglobulin. Arch Biochem Biophys. 1997;347(1):62–68. doi:10.1006/abbi.1997.0309
  • de Lorenc LB, Ramos AM, Sánchez MC, Montenegro R, Chiabrando GA. Structural evaluation of plasma α2-macroglobulin in acute pancreatitis. Clin Chem Lab Med. 2005;43(11):1183–1189.
  • Rodríguez-Calvo R, Ferrán B, Alonso J, et al. NR4A receptors up-regulate the antiproteinase alpha-2 macroglobulin (A2M) and modulate MMP-2 and MMP-9 in vascular smooth muscle cells. Thromb Haemost. 2015;113(06):1323–1334. doi:10.1160/TH14-07-0645
  • Serifova X, Ugarte-Berzal E, Opdenakker G, Vandooren J. Homotrimeric MMP-9 is an active hitchhiker on alpha-2-macroglobulin partially escaping protease inhibition and internalization through LRP-1. Cell Mol Life Sci. 2020;77(15):3013–3026. doi:10.1007/s00018-019-03338-4
  • Navratilova Z, Kolek V, Petrek M. Matrix metalloproteinases and their inhibitors in chronic obstructive pulmonary disease. Arch Immunol Ther Exp (Warsz). 2016;64(3):177–193. doi:10.1007/s00005-015-0375-5
  • Pandey KC, De S, Mishra PK. Role of proteases in chronic obstructive pulmonary disease. Front Pharmacol. 2017;8:512. doi:10.3389/fphar.2017.00512
  • Gilowska I, Kasper Ł, Bogacz K, et al. Impact of matrix metalloproteinase 9 on COPD development in Polish patients: genetic polymorphism, protein level, and their relationship with lung function. Biomed Res Int. 2018;2018:1–11. doi:10.1155/2018/6417415
  • Halpin DM, Criner GJ, Papi A, et al. Global initiative for the diagnosis, management, and prevention of chronic obstructive lung disease. The 2020 GOLD science committee report on COVID-19 and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2021;203(1):24–36. doi:10.1164/rccm.202009-3533SO
  • Graham BL, Steenbruggen I, Miller MR, et al. Standardization of spirometry 2019 update. An official American thoracic society and European respiratory society technical statement. Am J Respir Crit Care Med. 2019;200(8):e70–e88. doi:10.1164/rccm.201908-1590ST
  • Ko FW, Chan KP, Hui DS, et al. Acute exacerbation of COPD. Respirology. 2016;21(7):1152–1165. doi:10.1111/resp.12780
  • Burnett D, Stockley RA. Serum and sputum alpha 2 macroglobulin in patients with chronic obstructive airways disease. Thorax. 1981;36(7):512–516. doi:10.1136/thx.36.7.512
  • Sood A, Assad NA, Barnes PJ, et al. ERS/ATS workshop report on respiratory health effects of household air pollution. Eur Respir J. 2018;51(1):1700698. doi:10.1183/13993003.00698-2017
  • Rehman AA, Ahsan H, Khan FH. Alpha‐2‐macroglobulin: a physiological guardian. J Cell Physiol. 2013;228(8):1665–1675. doi:10.1002/jcp.24266
  • Linder R, Rönmark E, Pourazar J, Behndig AF, Blomberg A, Lindberg A. Proteolytic biomarkers are related to prognosis in COPD-report from a population-based cohort. Respir Res. 2018;19(1):1–7. doi:10.1186/s12931-018-0772-5
  • Fontana V, Silva PS, Belo VA, et al. Consistent alterations of circulating matrix metalloproteinases levels in untreated hypertensives and in spontaneously hypertensive rats: a relevant pharmacological target. Basic Clin Pharmacol Toxicol. 2011;109(2):130–137. doi:10.1111/j.1742-7843.2011.00698.x
  • Zhang Y, Ni H, Zhou H. Study on the expression of Toll-like receptor 4 and matrix metalloproteinase-9 in patients with chronic obstructive pulmonary disease and their clinical significance. Eur Rev Med Pharmacol Sci. 2017;21(9):2185–2191.
  • Sng JJ, Prazakova S, Thomas PS, Herbert C. MMP-8, MMP-9 and neutrophil elastase in peripheral blood and exhaled breath condensate in COPD. J Chronic Obstr Pulm Dis. 2017;14(2):238–244. doi:10.1080/15412555.2016.1249790
  • Uysal P, Uzun H. Relationship between circulating Serpina3g, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinase-1 and-2 with chronic obstructive pulmonary disease severity. Biomolecules. 2019;9(2):62. doi:10.3390/biom9020062
  • Montaño M, Sansores RH, Becerril C, et al. FEV1 inversely correlates with metalloproteinases 1, 7, 9 and CRP in COPD by biomass smoke exposure. Respir Res. 2014;15(1):1–7. doi:10.1186/1465-9921-15-74
  • Pinto-Plata V, Casanova C, Müllerova H, et al. Inflammatory and repair serum biomarker pattern. Association to clinical outcomes in COPD. Respir Res. 2012;13(1):1–8. doi:10.1186/1465-9921-13-1
  • Yao H, Hwang J-W, Sundar IK, et al. SIRT1 redresses the imbalance of tissue inhibitor of matrix metalloproteinase-1 and matrix metalloproteinase-9 in the development of mouse emphysema and human COPD. Am J Physiol Lung Cell Mol Physiol. 2013;305(9):L615–L624. doi:10.1152/ajplung.00249.2012
  • Lo C-Y, Huang H-Y, He J-R, et al. Increased matrix metalloproteinase-9 to tissue inhibitor of metalloproteinase-1 ratio in smokers with airway hyperresponsiveness and accelerated lung function decline. Int J Chron Obstruct Pulmon Dis. 2018;13:1135. doi:10.2147/COPD.S161257
  • Esa SA, Rawy AM, EL-Behissy MM, Kamel MH, El-Hwaitty HMMM. Study of the level of sputum matrix metalloproteinase-9 (MMP-9) and tissue inhibitor metalloproteinase-1 (TIMP-1) in COPD patients. Egypt J Chest Dis Tuberc. 2014;63(4):861–867. doi:10.1016/j.ejcdt.2014.06.014
  • Pons A, Sauleda J, Noguera A, et al. Decreased macrophage release of TGF-β and TIMP-1 in chronic obstructive pulmonary disease. Eur Respir J. 2005;26(1):60–66. doi:10.1183/09031936.05.00045504
  • Verrills NM, Irwin JA, Yan HX, et al. Identification of novel diagnostic biomarkers for asthma and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;183(12):1633–1643. doi:10.1164/rccm.201010-1623OC